Influence of clays on coal flotation: Focusing on coal surface oxidization

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2024-09-29 DOI:10.1016/j.mineng.2024.109028
Yangchao Xia , Yaowen Xing , Xiahui Gui , Yijun Cao
{"title":"Influence of clays on coal flotation: Focusing on coal surface oxidization","authors":"Yangchao Xia ,&nbsp;Yaowen Xing ,&nbsp;Xiahui Gui ,&nbsp;Yijun Cao","doi":"10.1016/j.mineng.2024.109028","DOIUrl":null,"url":null,"abstract":"<div><div>This study is the first to investigate the influence of clays on the flotation of coals with different surface oxidization degrees. The results show that moderate oxidation is not conducive to coal flotation, regardless of the presence of clays. However, when the coal undergoes a high degree of oxidation, the presence of clay minerals has almost no influence on the coal flotation or is even beneficial when montmorillonite is present. This phenomenon is explainable, given that moderate oxidation is unfavorable for coal-bubble adhesion, whereas high oxidation is favorable from a single-bubble perspective when clays exist. Furthermore, atomic force microscopy tests show that a weak attraction force existed between unoxidized coal and clays, whereas a repulsive force always exists between highly oxidized coal and clays. These findings provide new enlightenment for oxidized coal flotation.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"218 ","pages":"Article 109028"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004576","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study is the first to investigate the influence of clays on the flotation of coals with different surface oxidization degrees. The results show that moderate oxidation is not conducive to coal flotation, regardless of the presence of clays. However, when the coal undergoes a high degree of oxidation, the presence of clay minerals has almost no influence on the coal flotation or is even beneficial when montmorillonite is present. This phenomenon is explainable, given that moderate oxidation is unfavorable for coal-bubble adhesion, whereas high oxidation is favorable from a single-bubble perspective when clays exist. Furthermore, atomic force microscopy tests show that a weak attraction force existed between unoxidized coal and clays, whereas a repulsive force always exists between highly oxidized coal and clays. These findings provide new enlightenment for oxidized coal flotation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘土对煤浮选的影响:关注煤的表面氧化
这项研究首次探讨了粘土对不同表面氧化程度煤炭浮选的影响。结果表明,无论是否存在粘土,中度氧化都不利于煤的浮选。然而,当煤炭发生高度氧化时,粘土矿物的存在对煤炭浮选几乎没有影响,甚至当存在蒙脱石时对煤炭浮选有利。这种现象是可以解释的,因为中度氧化不利于煤-气泡的粘附,而当存在粘土时,从单个气泡的角度来看,高度氧化是有利的。此外,原子力显微镜测试表明,未氧化的煤和粘土之间存在微弱的吸引力,而高度氧化的煤和粘土之间始终存在排斥力。这些发现为氧化煤的浮选提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Enhancing durability and strength of concrete through an innovative abrasion and cement slurry treatment of recycled concrete aggregates Investigating the floatability of sperrylite and its interactions with selected standard and novel collectors Surface hydrophobic modification of sulfur-containing waste rock for the source control acid mine drainage Influence of calcination conditions on deep eutectic solvents (DES) leaching efficiency of light rare earth elements in bastnasite ore Effect of bleaching powder (ClO−) on pulsating HGMS of chalcopyrite from arsenopyrite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1