Spline regression with automatic knot selection

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-16 DOI:10.1016/j.csda.2024.108043
Vivien Goepp , Olivier Bouaziz , Grégory Nuel
{"title":"Spline regression with automatic knot selection","authors":"Vivien Goepp ,&nbsp;Olivier Bouaziz ,&nbsp;Grégory Nuel","doi":"10.1016/j.csda.2024.108043","DOIUrl":null,"url":null,"abstract":"<div><div>Spline regression has proven to be a useful tool for nonparametric regression. The flexibility of this function family is based on basepoints defining shifts in the behavior of the function – called <em>knots</em>. The question of setting the adequate number of knots and their placement is usually overcome by penalizing over the spline's overall smoothness (e.g. P-splines). However, there are areas of application where finding the best knot placement is of interest. A new method is introduced for automatically selecting knots in spline regression. The approach consists in setting many initial knots and fitting the spline regression through a penalized likelihood procedure called adaptive ridge, which discards the least relevant knots. The method – called A-splines, for <em>adaptive splines</em> – compares favorably with other knot selection methods: it runs way faster (∼10 to ∼400 faster) than comparable methods and has close to equal predictive performance. A-splines are applied to both simulated and real datasets.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spline regression has proven to be a useful tool for nonparametric regression. The flexibility of this function family is based on basepoints defining shifts in the behavior of the function – called knots. The question of setting the adequate number of knots and their placement is usually overcome by penalizing over the spline's overall smoothness (e.g. P-splines). However, there are areas of application where finding the best knot placement is of interest. A new method is introduced for automatically selecting knots in spline regression. The approach consists in setting many initial knots and fitting the spline regression through a penalized likelihood procedure called adaptive ridge, which discards the least relevant knots. The method – called A-splines, for adaptive splines – compares favorably with other knot selection methods: it runs way faster (∼10 to ∼400 faster) than comparable methods and has close to equal predictive performance. A-splines are applied to both simulated and real datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有自动结点选择功能的样条回归
事实证明,样条回归是一种有用的非参数回归工具。该函数系列的灵活性基于定义函数行为偏移的基点(称为节点)。通常通过对样条曲线的整体平滑度进行惩罚(如 P 样条曲线)来解决设置足够数量的节点及其位置的问题。然而,在某些应用领域中,寻找最佳的节点位置也很重要。本文介绍了一种在样条回归中自动选择节点的新方法。该方法包括设置许多初始节点,并通过一种称为自适应脊的惩罚似然程序拟合样条回归,从而舍弃最不相关的节点。这种方法被称为 A-splines(自适应样条曲线),与其他节点选择方法相比,它的运行速度更快(10 到 400 倍),预测性能也接近相同。A 样条法同时适用于模拟数据集和真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1