Numerical study on the pretreatment of ammonia by nanosecond pulsed discharge for combustion enhancement: Effects of pretreatment uniformity

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-09-28 DOI:10.1016/j.combustflame.2024.113752
Juntao Ao, Chengdong Kong, Yu Wang, Xiaojiang Wu, Zhongxiao Zhang
{"title":"Numerical study on the pretreatment of ammonia by nanosecond pulsed discharge for combustion enhancement: Effects of pretreatment uniformity","authors":"Juntao Ao,&nbsp;Chengdong Kong,&nbsp;Yu Wang,&nbsp;Xiaojiang Wu,&nbsp;Zhongxiao Zhang","doi":"10.1016/j.combustflame.2024.113752","DOIUrl":null,"url":null,"abstract":"<div><div>The nanosecond (NS) pulsed discharge for ammonia combustion assistance is numerically investigated with a special focus on the effects of discharge pretreatment uniformity. A method to mimic spatially non-uniform discharge pretreatment is established. Using NH<sub>3</sub>/O<sub>2</sub>/He and NH<sub>3</sub>/O<sub>2</sub>/N<sub>2</sub> mixtures as examples, the ignition delay time (IDT), the laminar burning velocity (LBV), and the extinction strain rate (ESR) of mixtures pretreated by different discharge pretreatment methods were analyzed under a wide range of pretreatment uniformity. The results indicate that for the premixed NH<sub>3</sub>/O<sub>2</sub>/He (or N<sub>2</sub>) pretreated by NS discharge pulses, with the increase of the pretreatment non-uniformity, the IDT initially increases slightly, reaching a maximum and then decreases rapidly by 80 %, while the LBV and the ESR first decreases slowly, reaching a minimum and then increases rapidly by 10 %. The initial increment of IDT with the non-uniformity can be attributed to the deterioration of discharge-induced chemical effect but the rapid decrease of IDT as the discharge pretreatment becomes highly non-uniform is largely determined by the combustion-related chemical effect. The effects of pretreatment uniformity on LBV and ESR can be largely due to the thermal effect. When the oxidant is pretreated by the NS discharge, the minimal IDT, the maximal LBV and ESR can be observed under uniform conditions owing to the chemical effects and thus a uniform discharge pretreatment is preferred. Furthermore, a comparative analysis of the three pretreatment methods under identical energy input reveals that under uniform pretreatment, the direct pretreatment of pure NH<sub>3</sub> is optimal, since it can generate more H<sub>2</sub> to enhance the combustion. However, under highly non-uniform conditions, the discharge pretreatment of premixed fuel/oxidant mixtures is the most efficient for combustion enhancement.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113752"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004619","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The nanosecond (NS) pulsed discharge for ammonia combustion assistance is numerically investigated with a special focus on the effects of discharge pretreatment uniformity. A method to mimic spatially non-uniform discharge pretreatment is established. Using NH3/O2/He and NH3/O2/N2 mixtures as examples, the ignition delay time (IDT), the laminar burning velocity (LBV), and the extinction strain rate (ESR) of mixtures pretreated by different discharge pretreatment methods were analyzed under a wide range of pretreatment uniformity. The results indicate that for the premixed NH3/O2/He (or N2) pretreated by NS discharge pulses, with the increase of the pretreatment non-uniformity, the IDT initially increases slightly, reaching a maximum and then decreases rapidly by 80 %, while the LBV and the ESR first decreases slowly, reaching a minimum and then increases rapidly by 10 %. The initial increment of IDT with the non-uniformity can be attributed to the deterioration of discharge-induced chemical effect but the rapid decrease of IDT as the discharge pretreatment becomes highly non-uniform is largely determined by the combustion-related chemical effect. The effects of pretreatment uniformity on LBV and ESR can be largely due to the thermal effect. When the oxidant is pretreated by the NS discharge, the minimal IDT, the maximal LBV and ESR can be observed under uniform conditions owing to the chemical effects and thus a uniform discharge pretreatment is preferred. Furthermore, a comparative analysis of the three pretreatment methods under identical energy input reveals that under uniform pretreatment, the direct pretreatment of pure NH3 is optimal, since it can generate more H2 to enhance the combustion. However, under highly non-uniform conditions, the discharge pretreatment of premixed fuel/oxidant mixtures is the most efficient for combustion enhancement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳秒脉冲放电对氨气进行预处理以增强燃烧的数值研究:预处理均匀性的影响
对用于氨助燃的纳秒(NS)脉冲放电进行了数值研究,重点关注放电预处理均匀性的影响。建立了一种模拟空间非均匀放电预处理的方法。以 NH3/O2/He 和 NH3/O2/N2 混合物为例,分析了不同放电预处理方法预处理的混合物在各种预处理均匀度下的点火延迟时间(IDT)、层燃速度(LBV)和消光应变率(ESR)。结果表明,对于采用 NS 放电脉冲预处理的预混合 NH3/O2/He(或 N2),随着预处理不均匀度的增加,IDT 初始略有增加,达到最大值后迅速降低 80%,而 LBV 和 ESR 则先缓慢降低,达到最小值后迅速增加 10%。IDT 随不均匀度的增加而增加的原因可能是放电引起的化学效应的恶化,但随着放电预处理变得高度不均匀,IDT 迅速减小的原因主要是与燃烧有关的化学效应。预处理均匀性对 LBV 和 ESR 的影响主要是由于热效应。当采用 NS 放电预处理氧化剂时,由于化学效应,在均匀条件下可观察到最小的 IDT、最大的 LBV 和 ESR,因此最好采用均匀放电预处理。此外,在相同能量输入条件下对三种预处理方法进行的比较分析表明,在均匀预处理条件下,纯 NH3 的直接预处理效果最佳,因为它可以产生更多的 H2 来促进燃烧。然而,在高度不均匀的条件下,预混合燃料/氧化剂混合物的排放预处理对提高燃烧效率最为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
A comprehensive parametric study on NO and N2O formation in ammonia-methane cofired premixed flames: Spatially resolved measurements and kinetic analysis Simultaneous Schlieren and direct photography of detonation diffraction regimes in hydrogen mixtures Elucidating high-pressure chemistry in acetylene oxidation: Jet-stirred reactor experiments, pressure effects, and kinetic interpretation A Bayesian approach to estimate flame spread model parameters over the cylindrical PMMA samples under various gravity conditions Ab initio intermolecular interactions mediate thermochemically real-fluid effects that affect system reactivity: The first application of high-order Virial EoS and first-principles multi-body potentials in trans-/super-critical autoignition modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1