Enhancing EEG artifact removal through neural architecture search with large kernels

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-10-01 DOI:10.1016/j.aei.2024.102831
Le Wu , Aiping Liu , Chang Li , Xun Chen
{"title":"Enhancing EEG artifact removal through neural architecture search with large kernels","authors":"Le Wu ,&nbsp;Aiping Liu ,&nbsp;Chang Li ,&nbsp;Xun Chen","doi":"10.1016/j.aei.2024.102831","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG) stands as one of the most vital noninvasive tools in neuroscience and clinical practice. Nevertheless, EEG data is highly susceptible to interference from various artifacts, which, in turn, can severely impact the subsequent analyses. As a result, the removal of these unwanted artifacts is of utmost importance. Recently, deep learning methods have demonstrated superior performance in artifact removal compared to traditional approaches. However, experts often invest substantial time and effort in identifying an efficient architecture, a process that is time-consuming and labor-intensive. In light of this challenge, this study introduces, for the first time, an artifact removal method based on neural network architecture search. This approach assigns probabilities to each potential operation within the network and optimizes the most suitable architecture based on the characteristics of the input data. Additionally, we expand the search space by incorporating large convolutional kernels, enabling the network to encompass a wider receptive field for the more effective capture of inherent EEG characteristics. The proposed method is evaluated on publicly available datasets, including electromyography (EMG), electrooculogram (EOG), electrocardiogram (ECG), and motion artifacts. Our results demonstrate that architectures incorporating convolution operations with varied kernel scales and shortcut connections are particularly effective for artifact removal. Notably, our method outperforms state-of-the-art techniques, achieving an average correlation coefficient (CC) exceeding 0.95, a relative root mean squared error (RRMSE) below 0.3, and a signal-to-noise ratio (SNR) above 12 dB. These findings underscore the potential of our method as a reliable and advanced technique for EEG denoising.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102831"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624004798","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG) stands as one of the most vital noninvasive tools in neuroscience and clinical practice. Nevertheless, EEG data is highly susceptible to interference from various artifacts, which, in turn, can severely impact the subsequent analyses. As a result, the removal of these unwanted artifacts is of utmost importance. Recently, deep learning methods have demonstrated superior performance in artifact removal compared to traditional approaches. However, experts often invest substantial time and effort in identifying an efficient architecture, a process that is time-consuming and labor-intensive. In light of this challenge, this study introduces, for the first time, an artifact removal method based on neural network architecture search. This approach assigns probabilities to each potential operation within the network and optimizes the most suitable architecture based on the characteristics of the input data. Additionally, we expand the search space by incorporating large convolutional kernels, enabling the network to encompass a wider receptive field for the more effective capture of inherent EEG characteristics. The proposed method is evaluated on publicly available datasets, including electromyography (EMG), electrooculogram (EOG), electrocardiogram (ECG), and motion artifacts. Our results demonstrate that architectures incorporating convolution operations with varied kernel scales and shortcut connections are particularly effective for artifact removal. Notably, our method outperforms state-of-the-art techniques, achieving an average correlation coefficient (CC) exceeding 0.95, a relative root mean squared error (RRMSE) below 0.3, and a signal-to-noise ratio (SNR) above 12 dB. These findings underscore the potential of our method as a reliable and advanced technique for EEG denoising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过使用大内核的神经架构搜索增强脑电图伪影去除能力
脑电图(EEG)是神经科学和临床实践中最重要的无创工具之一。然而,脑电图数据极易受到各种伪影的干扰,进而严重影响后续分析。因此,去除这些不必要的伪影至关重要。最近,与传统方法相比,深度学习方法在去除伪影方面表现出了卓越的性能。然而,专家们往往需要投入大量的时间和精力来确定有效的架构,这一过程既耗时又耗力。有鉴于此,本研究首次引入了一种基于神经网络架构搜索的人工痕迹去除方法。这种方法为网络中的每个潜在操作分配概率,并根据输入数据的特征优化最合适的架构。此外,我们还通过加入大型卷积核来扩展搜索空间,使网络能够包含更宽的感受野,从而更有效地捕捉固有的脑电图特征。我们在公开的数据集上对所提出的方法进行了评估,这些数据集包括肌电图(EMG)、脑电图(EOG)、心电图(ECG)和运动伪影。我们的研究结果表明,采用不同内核尺度和快捷连接的卷积运算架构对去除伪影特别有效。值得注意的是,我们的方法优于最先进的技术,平均相关系数 (CC) 超过 0.95,相对均方根误差 (RRMSE) 低于 0.3,信噪比 (SNR) 超过 12 dB。这些发现凸显了我们的方法作为一种可靠、先进的脑电图去噪技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
A method for constructing an ergonomics evaluation indicator system for community aging services based on Kano-Delphi-CFA: A case study in China A temperature-sensitive points selection method for machine tool based on rough set and multi-objective adaptive hybrid evolutionary algorithm Enhancing EEG artifact removal through neural architecture search with large kernels Optimal design of an integrated inspection scheme with two adjustable sampling mechanisms for lot disposition A novel product shape design method integrating Kansei engineering and whale optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1