Probing the Impact of Four BSF Layers on MASnI3‐Based Lead‐Free Perovskite Solar Cells for >33% Efficiency

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-10-01 DOI:10.1002/adts.202400662
Md. Faruk Hossain, Md. Mahabur Rahman, Md. Harun‐Or‐Rashid, Mongi Amami, Lamia Ben Farhat, Md. Ferdous Rahman
{"title":"Probing the Impact of Four BSF Layers on MASnI3‐Based Lead‐Free Perovskite Solar Cells for >33% Efficiency","authors":"Md. Faruk Hossain, Md. Mahabur Rahman, Md. Harun‐Or‐Rashid, Mongi Amami, Lamia Ben Farhat, Md. Ferdous Rahman","doi":"10.1002/adts.202400662","DOIUrl":null,"url":null,"abstract":"This study systematically investigates the impact of various layers of the back surface field (BSF) on the performance of CH₃NH₃SnI₃ (MASnI₃)‐based lead‐free mixed organic–inorganic halide perovskite solar cells. By employing SCAPS‐1D (Solar Cell Capacitance Simulator in One Dimension) simulation software, the behavior of solar cells is analyzed incorporating BSF layers of CuI, NiO, ZnTe, and CBTS. The findings indicate that the inclusion of these BSF materials significantly enhances power conversion efficiency (PCE), with CBTS showing the highest PCE of 33.57%. The energy band diagrams reveal that the BSF layers effectively reduce recombination losses at the rear interface and improve charge carrier collection. Detailed analysis of photovoltaic parameters, such as open‐circuit voltage (V<jats:sub>oc</jats:sub>), short‐circuit current density (J<jats:sub>sc</jats:sub>), fill factor (FF), and overall PCE, underscores the superiority of CBTS as optimal BSF materials. Temperature variation studies demonstrate that CBTS maintains superior performance across a range of temperatures, highlighting its potential for high‐efficiency, thermally stable perovskite solar cells. This comprehensive investigation provides valuable insights for optimizing the design and performance of MASnI₃‐based perovskite solar cells, with the aim of efficiencies greater than 33%.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"14 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400662","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the impact of various layers of the back surface field (BSF) on the performance of CH₃NH₃SnI₃ (MASnI₃)‐based lead‐free mixed organic–inorganic halide perovskite solar cells. By employing SCAPS‐1D (Solar Cell Capacitance Simulator in One Dimension) simulation software, the behavior of solar cells is analyzed incorporating BSF layers of CuI, NiO, ZnTe, and CBTS. The findings indicate that the inclusion of these BSF materials significantly enhances power conversion efficiency (PCE), with CBTS showing the highest PCE of 33.57%. The energy band diagrams reveal that the BSF layers effectively reduce recombination losses at the rear interface and improve charge carrier collection. Detailed analysis of photovoltaic parameters, such as open‐circuit voltage (Voc), short‐circuit current density (Jsc), fill factor (FF), and overall PCE, underscores the superiority of CBTS as optimal BSF materials. Temperature variation studies demonstrate that CBTS maintains superior performance across a range of temperatures, highlighting its potential for high‐efficiency, thermally stable perovskite solar cells. This comprehensive investigation provides valuable insights for optimizing the design and performance of MASnI₃‐based perovskite solar cells, with the aim of efficiencies greater than 33%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探究四层 BSF 层对 MASnI3 无铅过氧化物太阳能电池效率大于 33% 的影响
本研究系统地探讨了各种背表面场(BSF)层对基于 CH₃NH₃SnI₃(MASnI₃)的无铅混合有机无机卤化物包晶太阳能电池性能的影响。通过使用 SCAPS-1D(一维太阳能电池电容模拟器)模拟软件,分析了含有 CuI、NiO、ZnTe 和 CBTS 的 BSF 层的太阳能电池的行为。研究结果表明,加入这些 BSF 材料可显著提高功率转换效率(PCE),其中 CBTS 的 PCE 最高,达到 33.57%。能带图显示,BSF 层可有效减少后界面的重组损耗,并改善电荷载流子收集。对开路电压 (Voc)、短路电流密度 (Jsc)、填充因子 (FF) 和整体 PCE 等光伏参数的详细分析,凸显了 CBTS 作为最佳 BSF 材料的优越性。温度变化研究表明,CBTS 在一定温度范围内都能保持优异的性能,凸显了其在高效、热稳定的过氧化物太阳能电池方面的潜力。这项全面的研究为优化基于 MASnI₃的包晶石太阳能电池的设计和性能提供了宝贵的见解,其目标是使电池效率超过 33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1