Customizing H2O-Poor Electric Double Layer and Boosting Texture Exposure of Zn (101) Plane towards Super-High Areal Capacity Zinc Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-02 DOI:10.1002/anie.202414757
Yangyang Wang, Jiaxin Lv, Laixin Hong, Jiakai Zhang, Chunxia Chen, Ao Xu, Miao Huang, Xiubin Ren, Jinbo Bai, Hui Wang, Xiaojie Liu
{"title":"Customizing H2O-Poor Electric Double Layer and Boosting Texture Exposure of Zn (101) Plane towards Super-High Areal Capacity Zinc Metal Batteries","authors":"Yangyang Wang,&nbsp;Jiaxin Lv,&nbsp;Laixin Hong,&nbsp;Jiakai Zhang,&nbsp;Chunxia Chen,&nbsp;Ao Xu,&nbsp;Miao Huang,&nbsp;Xiubin Ren,&nbsp;Jinbo Bai,&nbsp;Hui Wang,&nbsp;Xiaojie Liu","doi":"10.1002/anie.202414757","DOIUrl":null,"url":null,"abstract":"<p>The catastrophic dendrite hyperplasia and parasitic reactions severely impede the future deployment of aqueous Zn-ion batteries. Controlling zinc orientation growth is considered to be an effective method to overcome the aforementioned concerns, especially for regulating the (002) plane of deposited Zn. Unfortunately, Zn (002) texture is difficult to obtain stable cycling under high deposition capacity resulting from its large lattice distortion and nonuniform distribution in electric field. Herein, different from traditional cognition, a crystallization orientation regulation tactic is proposed to boost Zn (101) texture exposure and inhibit zinc dendrite proliferation during plating/stripping. Experimental results and theoretical calculations demonstrate the malate molecules preferentially adsorb on the Zn (002) facet, leading to the texture exposure of distinctive Zn (101) plane. Meanwhile, the −COOH and −OH groups of malate molecules exhibit strong adsorption on the Zn anode surface and chelate with Zn<sup>2+</sup>, achieving H<sub>2</sub>O-poor electrical double layer. Very impressively, the multifunctional malate additive enlists zinc anode to survive for 600 h under a harsh condition of 15 mA cm<sup>−2</sup>/15 mAh cm<sup>−2</sup>. Moreover, the symmetric cell harvests highly-reversible cycling life of 6600 h at 5 mA cm<sup>−2</sup>/1.25 mAh cm<sup>−2</sup>, remarkably outperforming the ZnSO<sub>4</sub> electrolyte. The assembled Zn//MnO<sub>2</sub> full cells also demonstrate prominent electrochemical reversibility.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 2","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414757","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The catastrophic dendrite hyperplasia and parasitic reactions severely impede the future deployment of aqueous Zn-ion batteries. Controlling zinc orientation growth is considered to be an effective method to overcome the aforementioned concerns, especially for regulating the (002) plane of deposited Zn. Unfortunately, Zn (002) texture is difficult to obtain stable cycling under high deposition capacity resulting from its large lattice distortion and nonuniform distribution in electric field. Herein, different from traditional cognition, a crystallization orientation regulation tactic is proposed to boost Zn (101) texture exposure and inhibit zinc dendrite proliferation during plating/stripping. Experimental results and theoretical calculations demonstrate the malate molecules preferentially adsorb on the Zn (002) facet, leading to the texture exposure of distinctive Zn (101) plane. Meanwhile, the −COOH and −OH groups of malate molecules exhibit strong adsorption on the Zn anode surface and chelate with Zn2+, achieving H2O-poor electrical double layer. Very impressively, the multifunctional malate additive enlists zinc anode to survive for 600 h under a harsh condition of 15 mA cm−2/15 mAh cm−2. Moreover, the symmetric cell harvests highly-reversible cycling life of 6600 h at 5 mA cm−2/1.25 mAh cm−2, remarkably outperforming the ZnSO4 electrolyte. The assembled Zn//MnO2 full cells also demonstrate prominent electrochemical reversibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制贫水电双电层并增强 Zn (101) 平面的纹理暴露,以实现超高面积容量的锌金属电池。
灾难性的枝晶增生和寄生反应严重阻碍了水性锌离子电池的未来应用。控制锌的取向生长被认为是克服上述问题的有效方法,尤其是在调节沉积锌的 (002) 平面方面。遗憾的是,Zn(002)纹理因其较大的晶格畸变和在电场中的不均匀分布,很难在高沉积容量下获得稳定的循环。有别于传统认知,本文提出了一种结晶取向调节策略,以提高锌(101)纹理的曝光率,并在电镀/剥离过程中抑制锌枝晶的增殖。实验结果和理论计算证明,苹果酸盐分子优先吸附在 Zn(002)面上,从而导致独特的 Zn(101)面纹理暴露。同时,苹果酸盐分子的-COOH和-OH基团在锌阳极表面表现出很强的吸附性,并与Zn2+螯合,实现了贫H2O电双层。令人印象深刻的是,多功能苹果酸盐添加剂使锌阳极在 15 mAh cm-2/15 mAh cm-2 的苛刻条件下存活了 600 小时。此外,对称电池在 5 mA cm-2/1.25 mAh cm-2 的条件下可获得 6600 小时的高可逆循环寿命,显著优于 ZnSO4 电解液。组装好的 Zn//MnO2 全电池也表现出突出的电化学可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
B ← N Lewis Pair Fusion of N,N‐Diaryldihydrophenazines: Effect on Structural, Electronic, and Emissive Properties Mannich‐Type Polymers: A Versatile Platform for Water‐Degradable, Malleable, and Environmentally Responsive Networks Spatially Controlled Co‐Delivery of Diagnostic and Therapeutic Agents Using DNA Nanoframeworks for Pancreatic Cancer Precision Therapy Fluid Chemistry of Metal Halide Perovskites Reactive Hydrogen Species Behaviors on Pd/TiN: In situ SERS Guided Regulation for Chemoselective Hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1