The Effect of Temperature Variability on Biological Responses of Ectothermic Animals—A Meta-Analysis

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-10-02 DOI:10.1111/ele.14511
Clayton W. Stocker, Stephanie M. Bamford, Miki Jahn, Geoffrey P. F. Mazué, Amanda K. Pettersen, Daniel Ritchie, Alexander M. Rubin, Daniel W. A. Noble, Frank Seebacher
{"title":"The Effect of Temperature Variability on Biological Responses of Ectothermic Animals—A Meta-Analysis","authors":"Clayton W. Stocker,&nbsp;Stephanie M. Bamford,&nbsp;Miki Jahn,&nbsp;Geoffrey P. F. Mazué,&nbsp;Amanda K. Pettersen,&nbsp;Daniel Ritchie,&nbsp;Alexander M. Rubin,&nbsp;Daniel W. A. Noble,&nbsp;Frank Seebacher","doi":"10.1111/ele.14511","DOIUrl":null,"url":null,"abstract":"<p>Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (&lt;8 h) or longer (&gt;48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased ‘gene expression’ in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14511","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased ‘gene expression’ in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度变化对体温过高动物生物反应的影响--一项 Meta 分析。
气候变化正在改变气温的平均值和变化,在进行保护预测时需要考虑到这两个因素。然而,关于气温波动对生物功能的影响,文献尚未达成共识。波动可能会影响生物反应,因为非线性反应、内分泌调节或暴露在破坏性温度下会造成不平等。在此,我们对温度波动与具有相同平均值的恒定温度相比如何影响个体和种群内的生物反应的知识现状进行了梳理。我们对 143 项关于外温动物的研究(1492 个效应大小,118 个物种)进行了荟萃分析。在这项研究中,89%的效应大小来自昼夜温差周期,但昼夜温差周期和较短(48 小时)周期对生物反应的影响没有显著差异。我们的研究表明,温度波动对性状平均值和方差的总体影响很小。然而,温度波动可能会造成压力:波动会增加水生动物的 "基因表达",这主要是由 hsp70 的增加所驱动的。温度波动也会降低寿命,而且波动幅度的增加会对水生生物的种群反应产生负面影响。我们的结论是,平均温度和极端事件(如热浪)值得考虑,但有规律的(尤其是昼夜)温度波动则不那么重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Elevated Temperature Diminishes Reciprocal Selection in an Experimental Plant‐Pollinator‐Herbivore System Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity Getting better with age: Lessons from the Kenya Long‐term Exclosure Experiment (KLEE) Density dependence maintains long‐term stability despite increased isolation and inbreeding in the Florida Scrub‐Jay Multi‐Trophic Level Responses to Marine Heatwave Disturbances in the California Current Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1