Entao Zhang, Yang Wang, Shiping Chen, Daowei Zhou, Zhouping Shangguan, Jianhui Huang, Jin-Sheng He, Yanfen Wang, Jiandong Sheng, Lisong Tang, Xinrong Li, Ming Dong, Yan Wu, Shuijin Hu, Yongfei Bai
{"title":"Mycorrhizal Symbiosis Increases Plant Phylogenetic Diversity and Regulates Community Assembly in Grasslands","authors":"Entao Zhang, Yang Wang, Shiping Chen, Daowei Zhou, Zhouping Shangguan, Jianhui Huang, Jin-Sheng He, Yanfen Wang, Jiandong Sheng, Lisong Tang, Xinrong Li, Ming Dong, Yan Wu, Shuijin Hu, Yongfei Bai","doi":"10.1111/ele.14516","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The intricate mechanisms controlling plant diversity and community composition are cornerstone of ecological understanding. Yet, the role of mycorrhizal symbiosis in influencing community composition has often been underestimated. Here, we use extensive species survey data from 1315 grassland sites in China to elucidate the influence of mycorrhizal symbiosis on plant phylogenetic diversity and community assembly. We show that increasing mycorrhizal symbiotic potential leads to greater phylogenetic dispersion within plant communities. Mycorrhizal species predominantly influence deterministic processes, suggesting a role in niche-based community assembly. Conversely, non-mycorrhizal species exert a stronger influence on stochastic processes, highlighting the importance of random events in shaping community structure. These results underscore the crucial but often hidden role of mycorrhizal symbiosis in driving plant community diversity and assembly. This study provides valuable insights into the mechanisms shaping ecological communities and the way for more informed conservation that acknowledges the complex interplay between symbiosis and community dynamics.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14516","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intricate mechanisms controlling plant diversity and community composition are cornerstone of ecological understanding. Yet, the role of mycorrhizal symbiosis in influencing community composition has often been underestimated. Here, we use extensive species survey data from 1315 grassland sites in China to elucidate the influence of mycorrhizal symbiosis on plant phylogenetic diversity and community assembly. We show that increasing mycorrhizal symbiotic potential leads to greater phylogenetic dispersion within plant communities. Mycorrhizal species predominantly influence deterministic processes, suggesting a role in niche-based community assembly. Conversely, non-mycorrhizal species exert a stronger influence on stochastic processes, highlighting the importance of random events in shaping community structure. These results underscore the crucial but often hidden role of mycorrhizal symbiosis in driving plant community diversity and assembly. This study provides valuable insights into the mechanisms shaping ecological communities and the way for more informed conservation that acknowledges the complex interplay between symbiosis and community dynamics.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.