{"title":"Pepper root exudate alleviates cucumber root-knot nematode infection by recruiting a rhizobacterium.","authors":"Tian Tian, Godelieve Gheysen, Tina Kyndt, Chenmi Mo, Xueqiong Xiao, Yanyan Lv, Haibo Long, Gaofeng Wang, Yannong Xiao","doi":"10.1016/j.xplc.2024.101139","DOIUrl":null,"url":null,"abstract":"<p><p>Root-knot nematodes (Meloidogyne spp.) have garnered significant attention from researchers due to their substantial damage to crops and worldwide distribution. However, controlling this nematode disease is challenging which results from limited chemical pesticides and biocontrol agents effective against them. Here, we demonstrate that pepper-rotation markedly reduces Meloidogyne incognita infection in cucumber and diminishes the presence of p-hydroxybenzoic acid in the soil, a compound known to exacerbate M. incognita infection. Pepper-rotation also structures the rhizobacterial community, leading to the colonization of two Pseudarthrobacter oxydans strains (RH60 and RH97) in the cucumber rhizosphere, facilitated by palmitic acid enrichment in pepper root exudates. Furthermore, both strains exhibit high nematocidal activity against M. incognita, and possess the ability to biosynthesize indoleacetic acid and biodegrade p-hydroxybenzoic acid. RH60 and RH97 additionally induce systemic resistance in cucumber plants and promote their growth. These data suggest that pepper root-exudate palmitic acid alleviates M. incognita infection by recruiting beneficial P. oxydans in the cucumber rhizosphere. Our analyses identify a novel chemical component in root exudates and uncover its pivotal role in crop rotation for disease attenuation, providing intriguing insights into the keystone function of root exudates in plant protection against root-knot nematode infection.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101139","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Root-knot nematodes (Meloidogyne spp.) have garnered significant attention from researchers due to their substantial damage to crops and worldwide distribution. However, controlling this nematode disease is challenging which results from limited chemical pesticides and biocontrol agents effective against them. Here, we demonstrate that pepper-rotation markedly reduces Meloidogyne incognita infection in cucumber and diminishes the presence of p-hydroxybenzoic acid in the soil, a compound known to exacerbate M. incognita infection. Pepper-rotation also structures the rhizobacterial community, leading to the colonization of two Pseudarthrobacter oxydans strains (RH60 and RH97) in the cucumber rhizosphere, facilitated by palmitic acid enrichment in pepper root exudates. Furthermore, both strains exhibit high nematocidal activity against M. incognita, and possess the ability to biosynthesize indoleacetic acid and biodegrade p-hydroxybenzoic acid. RH60 and RH97 additionally induce systemic resistance in cucumber plants and promote their growth. These data suggest that pepper root-exudate palmitic acid alleviates M. incognita infection by recruiting beneficial P. oxydans in the cucumber rhizosphere. Our analyses identify a novel chemical component in root exudates and uncover its pivotal role in crop rotation for disease attenuation, providing intriguing insights into the keystone function of root exudates in plant protection against root-knot nematode infection.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.