Constructing Molecular Networks on Metal Surfaces through Tellurium-Based Chalcogen-Organic Interaction.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-03 DOI:10.1021/acsnano.4c11344
Fengru Zheng, Qi Huang, Juan Xiang, Zhiwen Zhu, Jiayi Lu, Jinyang Xu, Zhaofeng Liang, Lei Xie, Fei Song, Qiang Sun
{"title":"Constructing Molecular Networks on Metal Surfaces through Tellurium-Based Chalcogen-Organic Interaction.","authors":"Fengru Zheng, Qi Huang, Juan Xiang, Zhiwen Zhu, Jiayi Lu, Jinyang Xu, Zhaofeng Liang, Lei Xie, Fei Song, Qiang Sun","doi":"10.1021/acsnano.4c11344","DOIUrl":null,"url":null,"abstract":"<p><p>On-surface molecular self-assembly presents an important approach to the development of low-dimensional functional nanostructures and nanomaterials. Traditional strategies primarily exploit hydrogen bonding or metal coordination, yet the potential of chalcogen bonding (ChB) for on-surface self-assemblies remains underexplored. Here, we explore fabricating molecular networks via tellurium (Te)-directed chalcogen-organic interactions. Employing carbonitrile molecules as molecular building blocks, we have achieved extended 2D networks exhibiting a 4-fold binding motif on Au(111), marking a notable difference from the conventional coordinative interaction involving transition metals. Our findings, supported by density functional theory (DFT) and scanning tunneling spectroscopy (STS), show that the Te-carbonitrile interaction exhibits lower stability compared to the metal-organic coordination, and the construction of the Te-directed molecular networks does not alter the electronic properties of the involved molecules. Introducing chalcogen-directed interactions may expand the spectrum of strategies in supramolecular assembly, contributing to the design of advanced molecular architectures for nanotechnological applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11344","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On-surface molecular self-assembly presents an important approach to the development of low-dimensional functional nanostructures and nanomaterials. Traditional strategies primarily exploit hydrogen bonding or metal coordination, yet the potential of chalcogen bonding (ChB) for on-surface self-assemblies remains underexplored. Here, we explore fabricating molecular networks via tellurium (Te)-directed chalcogen-organic interactions. Employing carbonitrile molecules as molecular building blocks, we have achieved extended 2D networks exhibiting a 4-fold binding motif on Au(111), marking a notable difference from the conventional coordinative interaction involving transition metals. Our findings, supported by density functional theory (DFT) and scanning tunneling spectroscopy (STS), show that the Te-carbonitrile interaction exhibits lower stability compared to the metal-organic coordination, and the construction of the Te-directed molecular networks does not alter the electronic properties of the involved molecules. Introducing chalcogen-directed interactions may expand the spectrum of strategies in supramolecular assembly, contributing to the design of advanced molecular architectures for nanotechnological applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于碲的钙原有机相互作用在金属表面构建分子网络。
表面分子自组装是开发低维功能纳米结构和纳米材料的重要方法。传统的策略主要是利用氢键或金属配位,但对于表面分子自组装的查尔根键(ChB)潜力仍未充分开发。在这里,我们探讨了通过碲(Te)引导的查尔根-有机相互作用来制造分子网络。利用碳腈分子作为分子构件,我们在 Au(111) 上实现了扩展的二维网络,展现出 4 折结合模式,这与涉及过渡金属的传统配位相互作用有着显著区别。我们的研究结果得到了密度泛函理论(DFT)和扫描隧道光谱学(STS)的支持,结果表明,与金属有机配位相比,Te-腈相互作用的稳定性较低,而且 Te-定向分子网络的构建不会改变相关分子的电子特性。引入钙原定向相互作用可能会扩大超分子组装的策略范围,有助于设计先进的分子结构,用于纳米技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
AptBCis1, An Aptamer-Cisplatin Conjugate, Is Effective in Lung Cancer Leptomeningeal Carcinomatosis. Compact Physical Implementation of Spiking Neural Network Using Ambipolar WSe2 n-Type/p-Type Ferroelectric Field-Effect Transistor. Constructing Molecular Networks on Metal Surfaces through Tellurium-Based Chalcogen-Organic Interaction. Low-Temperature Activation and Coupling of Methane on MgO Nanostructures Embedded in Cu2O/Cu(111). Multibarrier Collaborative Modulation Devices with Ultra-High Logic Operation Density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1