Chemical Pressure-Driven Band Convergence and Discordant Atoms Intensify Phonon Scattering Leading to High Thermoelectric Performance in SnTe.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-10-03 DOI:10.1021/jacs.4c10286
Hongwei Ming, Zhong-Zhen Luo, Zixuan Chen, Hong-Hua Cui, Wenwen Zheng, Zhigang Zou, Mercouri G Kanatzidis
{"title":"Chemical Pressure-Driven Band Convergence and Discordant Atoms Intensify Phonon Scattering Leading to High Thermoelectric Performance in SnTe.","authors":"Hongwei Ming, Zhong-Zhen Luo, Zixuan Chen, Hong-Hua Cui, Wenwen Zheng, Zhigang Zou, Mercouri G Kanatzidis","doi":"10.1021/jacs.4c10286","DOIUrl":null,"url":null,"abstract":"<p><p>SnTe is an intriguing alternative to PbTe for midtemperature thermoelectric applications. Despite steady progress, its performance is lagging, in part because of the large energy difference(Δ<i>E</i><sub>L-Σ</sub>) between the light (L-band) and heavy (Σ-band) valence bands and higher lattice thermal conductivity (κ<sub>L</sub>). Previous studies have shown that applying pressure can enhance the Seebeck coefficient (<i>S</i>) and power factor (<i>PF</i>) of SnTe. Inspired by this study, we showcase how the high-pressure effect can be emulated under ambient pressure by substituting Sn with atoms possessing smaller atomic radii. Specifically, Sb- and Ge-doping combined with CdTe- or CdS-alloying induce lattice shrinkage, also referred to as \"chemical pressure\", raising the energy of the Σ-band. Additionally, these substituted atoms lower the contribution of Sn 5s-Te 5p antibonding states to the L-band, thereby reducing its energy and dispersion. These combined effects decrease Δ<i>E</i><sub>L-Σ</sub> from 0.36 to 0.09 eV, leading to the enhanced <i>S</i> and average <i>PF</i><sub>avg</sub>. Notably, the <i>PF</i><sub>avg</sub>, ranging from 323 to 873 K, increases from 8.1 μW cm<sup>-1</sup> K<sup>-2</sup> for pristine SnTe to 21.6 μW cm<sup>-1</sup> K<sup>-2</sup> for Sn<sub>0.79</sub>Ge<sub>0.15</sub>Sb<sub>0.06</sub>Te-5% CdTe. Furthermore, the intensified phonon scattering resulting from discordant nature of Ge and Cd atoms, creating point defects soften phonon modes, and the presence of Ge-rich nanoprecipitates lead to a substantial 62% reduction in κ<sub>L</sub> at 873 K. This strong valence band convergence and enhanced phonon scattering collectively contribute to a high peak <i>ZT</i> of 1.5 (873 K) and high average <i>ZT</i><sub>avg</sub> = 0.81 over the temperature range of 323-873 K.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10286","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

SnTe is an intriguing alternative to PbTe for midtemperature thermoelectric applications. Despite steady progress, its performance is lagging, in part because of the large energy difference(ΔEL-Σ) between the light (L-band) and heavy (Σ-band) valence bands and higher lattice thermal conductivity (κL). Previous studies have shown that applying pressure can enhance the Seebeck coefficient (S) and power factor (PF) of SnTe. Inspired by this study, we showcase how the high-pressure effect can be emulated under ambient pressure by substituting Sn with atoms possessing smaller atomic radii. Specifically, Sb- and Ge-doping combined with CdTe- or CdS-alloying induce lattice shrinkage, also referred to as "chemical pressure", raising the energy of the Σ-band. Additionally, these substituted atoms lower the contribution of Sn 5s-Te 5p antibonding states to the L-band, thereby reducing its energy and dispersion. These combined effects decrease ΔEL-Σ from 0.36 to 0.09 eV, leading to the enhanced S and average PFavg. Notably, the PFavg, ranging from 323 to 873 K, increases from 8.1 μW cm-1 K-2 for pristine SnTe to 21.6 μW cm-1 K-2 for Sn0.79Ge0.15Sb0.06Te-5% CdTe. Furthermore, the intensified phonon scattering resulting from discordant nature of Ge and Cd atoms, creating point defects soften phonon modes, and the presence of Ge-rich nanoprecipitates lead to a substantial 62% reduction in κL at 873 K. This strong valence band convergence and enhanced phonon scattering collectively contribute to a high peak ZT of 1.5 (873 K) and high average ZTavg = 0.81 over the temperature range of 323-873 K.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学压力驱动的带收敛和不和谐原子加剧了声子散射,从而提高了碲化镉的热电性能。
在中温热电应用领域,SnTe 是 PbTe 的一种令人感兴趣的替代品。尽管取得了稳步进展,但其性能仍然落后,部分原因是轻价带(L 波段)和重价带(Σ 波段)之间存在较大的能量差(ΔEL-Σ)以及较高的晶格热导率(κL)。以前的研究表明,施加压力可以提高锡碲的塞贝克系数(S)和功率因数(PF)。受这项研究的启发,我们展示了如何通过用原子半径较小的原子替代锡来模拟环境压力下的高压效应。具体来说,Sb 和 Ge 掺杂与 CdTe 或 CdS 合金相结合会引起晶格收缩(也称为 "化学压力"),从而提高 Σ 带的能量。此外,这些取代原子还会降低 Sn 5s-Te 5p 反键态对 L 波段的贡献,从而降低其能量和色散。这些综合效应将 ΔEL-Σ 从 0.36 eV 降至 0.09 eV,从而增强了 S 和平均 PFavg。值得注意的是,在 323 至 873 K 范围内,原始 SnTe 的 PFavg 从 8.1 μW cm-1 K-2 增加到 Sn0.79Ge0.15Sb0.06Te-5% CdTe 的 21.6 μW cm-1 K-2。此外,由于 Ge 原子和 Cd 原子的不和谐性质导致声子散射增强,产生了点缺陷软化了声子模式,再加上富含 Ge 的纳米沉淀物的存在,使得 873 K 时的κL 显著降低了 62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Catalytic Asymmetric Barbier Reaction of Ketones with Unactivated Alkyl Electrophiles. Chemical Pressure-Driven Band Convergence and Discordant Atoms Intensify Phonon Scattering Leading to High Thermoelectric Performance in SnTe. Coupling and Activation of the β1 Adrenergic Receptor - The Role of the Third Intracellular Loop. Data Analysis of Dynamics in Protein Solutions Using Quasi-Elastic Neutron Scattering─Important Insights from Polarized Neutrons. Machine Learning-Based Investigation of Atomic Packing Effects: Chemical Pressures at the Extremes of Intermetallic Complexity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1