Xiaoyu Yin, Marcy Richardson, Andreas Laner, Xuemei Shi, Elisabet Ognedal, Valeria Vasta, Thomas V O Hansen, Marta Pineda, Deborah Ritter, Johan de Dunnen, Emadeldin Hassanin, Wencong Lyman Lin, Ester Borras, Karl Krahn, Margareta Nordling, Alexandra Martins, Khalid Mahmood, Emily Nadeau, Victoria Beshay, Carli Tops, Maurizio Genuardi, Tina Pesaran, Ian M Frayling, Gabriel Capellá, Andrew Latchford, Sean V Tavtigian, Carlo Maj, Sharon E Plon, Marc S Greenblatt, Finlay A Macrae, Isabel Spier, Stefan Aretz
{"title":"Large-scale application of ClinGen-InSiGHT APC-specific ACMG/AMP variant classification criteria leads to substantial reduction in VUS.","authors":"Xiaoyu Yin, Marcy Richardson, Andreas Laner, Xuemei Shi, Elisabet Ognedal, Valeria Vasta, Thomas V O Hansen, Marta Pineda, Deborah Ritter, Johan de Dunnen, Emadeldin Hassanin, Wencong Lyman Lin, Ester Borras, Karl Krahn, Margareta Nordling, Alexandra Martins, Khalid Mahmood, Emily Nadeau, Victoria Beshay, Carli Tops, Maurizio Genuardi, Tina Pesaran, Ian M Frayling, Gabriel Capellá, Andrew Latchford, Sean V Tavtigian, Carlo Maj, Sharon E Plon, Marc S Greenblatt, Finlay A Macrae, Isabel Spier, Stefan Aretz","doi":"10.1016/j.ajhg.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUSs), APC-specific variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) based on the criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). A streamlined algorithm using the APC-specific criteria was developed and applied to assess all APC variants in ClinVar and the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) international reference APC Leiden Open Variation Database (LOVD) variant database, which included a total of 10,228 unique APC variants. Among the ClinVar and LOVD variants with an initial classification of (likely) benign or (likely) pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUSs were reclassified into clinically meaningful classes, the vast majority as (likely) benign. The total number of VUSs was reduced by 37%. In 24 out of 37 (65%) promising APC variants that remained VUS despite evidence for pathogenicity, a data-mining-driven work-up allowed their reclassification as (likely) pathogenic. These results demonstrated that the application of APC-specific criteria substantially reduced the number of VUSs in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalizable model for other gene- or disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUSs that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2427-2443"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.09.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUSs), APC-specific variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) based on the criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). A streamlined algorithm using the APC-specific criteria was developed and applied to assess all APC variants in ClinVar and the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) international reference APC Leiden Open Variation Database (LOVD) variant database, which included a total of 10,228 unique APC variants. Among the ClinVar and LOVD variants with an initial classification of (likely) benign or (likely) pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUSs were reclassified into clinically meaningful classes, the vast majority as (likely) benign. The total number of VUSs was reduced by 37%. In 24 out of 37 (65%) promising APC variants that remained VUS despite evidence for pathogenicity, a data-mining-driven work-up allowed their reclassification as (likely) pathogenic. These results demonstrated that the application of APC-specific criteria substantially reduced the number of VUSs in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalizable model for other gene- or disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUSs that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.