An evolving understanding of multiple causal variants underlying genetic association signals.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY American journal of human genetics Pub Date : 2025-02-08 DOI:10.1016/j.ajhg.2025.01.018
Erping Long, Jacob Williams, Haoyu Zhang, Jiyeon Choi
{"title":"An evolving understanding of multiple causal variants underlying genetic association signals.","authors":"Erping Long, Jacob Williams, Haoyu Zhang, Jiyeon Choi","doi":"10.1016/j.ajhg.2025.01.018","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how genetic variation contributes to phenotypic variation is a fundamental question in genetics. Genome-wide association studies (GWASs) have discovered numerous genetic associations with various human phenotypes, most of which contain co-inherited variants in strong linkage disequilibrium (LD) with indistinguishable statistical significance. The experimental and analytical difficulty in identifying the \"causal variant\" among the co-inherited variants has traditionally led mechanistic studies to focus on relatively simple loci, where a single functional variant is presumed to explain most of the association signal and affect a target gene. The notion that a single causal variant is responsible for an association signal, while other variants in LD are merely correlated, has often been assumed in functional studies. However, emerging evidence powered by high-throughput experimental tools and context-specific functional databases argues that even a single independent signal may involve multiple functional variants in strong LD, each contributing to the observed genetic association. In this perspective, we articulate this evolving understanding of causal variants through examples from both traditional locus-by-locus approaches and more recent high-throughput functional studies. We then discuss the implications and prospects of this notion in understanding the genetic architecture of complex traits and interpreting the variant-level causality in GWAS follow-up studies.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.01.018","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how genetic variation contributes to phenotypic variation is a fundamental question in genetics. Genome-wide association studies (GWASs) have discovered numerous genetic associations with various human phenotypes, most of which contain co-inherited variants in strong linkage disequilibrium (LD) with indistinguishable statistical significance. The experimental and analytical difficulty in identifying the "causal variant" among the co-inherited variants has traditionally led mechanistic studies to focus on relatively simple loci, where a single functional variant is presumed to explain most of the association signal and affect a target gene. The notion that a single causal variant is responsible for an association signal, while other variants in LD are merely correlated, has often been assumed in functional studies. However, emerging evidence powered by high-throughput experimental tools and context-specific functional databases argues that even a single independent signal may involve multiple functional variants in strong LD, each contributing to the observed genetic association. In this perspective, we articulate this evolving understanding of causal variants through examples from both traditional locus-by-locus approaches and more recent high-throughput functional studies. We then discuss the implications and prospects of this notion in understanding the genetic architecture of complex traits and interpreting the variant-level causality in GWAS follow-up studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
期刊最新文献
Single-cell transcriptomics reveals inter-ethnic variation in immune response to Falciparum malaria. Contribution of autosomal rare and de novo variants to sex differences in autism. Distinct explanations underlie gene-environment interactions in the UK Biobank. An evolving understanding of multiple causal variants underlying genetic association signals. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1