Yu-Wei Luo, Yang Fang, Hui-Xian Zeng, Yu-Chen Ji, Meng-Zhi Wu, Hui Li, Jie-Ying Chen, Li-Min Zheng, Jian-Hong Fang, Shi-Mei Zhuang
{"title":"HIF1α Counteracts TGFβ1-Driven TSP1 Expression in Endothelial Cells to Stimulate Angiogenesis in the Hypoxic Tumor Microenvironment.","authors":"Yu-Wei Luo, Yang Fang, Hui-Xian Zeng, Yu-Chen Ji, Meng-Zhi Wu, Hui Li, Jie-Ying Chen, Li-Min Zheng, Jian-Hong Fang, Shi-Mei Zhuang","doi":"10.1158/0008-5472.CAN-24-2324","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence suggests that transforming growth factor β1 (TGFβ1) can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the anti-angiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiological angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the anti-angiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating anti-angiogenic factor thrombospondin 1 (TSP1) in endothelial cells (ECs) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced microRNA-145 (miR145) expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma (HCC) displayed increased miR145 and decreased SMAD3 and TSP1 compared to ECs from adjacent non-tumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in HCC tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-2324","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging evidence suggests that transforming growth factor β1 (TGFβ1) can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the anti-angiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiological angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the anti-angiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating anti-angiogenic factor thrombospondin 1 (TSP1) in endothelial cells (ECs) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced microRNA-145 (miR145) expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma (HCC) displayed increased miR145 and decreased SMAD3 and TSP1 compared to ECs from adjacent non-tumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in HCC tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.