PHGDH Induction by MAPK Is Essential for Melanoma Formation and Creates an Actionable Metabolic Vulnerability.

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2025-01-15 DOI:10.1158/0008-5472.CAN-24-2471
Neel Jasani, Xiaonan Xu, Benjamin Posorske, Yumi Kim, Kaizhen Wang, Olga Vera, Kenneth Y Tsai, Gina M DeNicola, Florian A Karreth
{"title":"PHGDH Induction by MAPK Is Essential for Melanoma Formation and Creates an Actionable Metabolic Vulnerability.","authors":"Neel Jasani, Xiaonan Xu, Benjamin Posorske, Yumi Kim, Kaizhen Wang, Olga Vera, Kenneth Y Tsai, Gina M DeNicola, Florian A Karreth","doi":"10.1158/0008-5472.CAN-24-2471","DOIUrl":null,"url":null,"abstract":"<p><p>Overexpression of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. Here, we found that PHGDH is universally increased in melanoma cells and required for melanomagenesis. Although PHGDH amplification explained PHGDH overexpression in a subset of melanomas, oncogenic BRAFV600E also promoted PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, depletion of PHGDH in genetic mouse melanoma models blocked tumor formation. In addition to BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction. Consequently, melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction, which promoted cell death in vitro and attenuated melanoma growth in vivo. In summary, this study identified that PHGDH is essential for melanomagenesis and regulated by BRAFV600E, revealing a targetable vulnerability in BRAFV600E-mutant melanoma. Significance: BRAFV600E promotes the expression of the serine synthesis enzyme PHGDH, which is required for melanoma formation, and can be targeted to sensitize melanoma to dietary serine restriction, providing a melanoma cell-specific treatment strategy.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"314-328"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-2471","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Overexpression of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. Here, we found that PHGDH is universally increased in melanoma cells and required for melanomagenesis. Although PHGDH amplification explained PHGDH overexpression in a subset of melanomas, oncogenic BRAFV600E also promoted PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, depletion of PHGDH in genetic mouse melanoma models blocked tumor formation. In addition to BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction. Consequently, melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction, which promoted cell death in vitro and attenuated melanoma growth in vivo. In summary, this study identified that PHGDH is essential for melanomagenesis and regulated by BRAFV600E, revealing a targetable vulnerability in BRAFV600E-mutant melanoma. Significance: BRAFV600E promotes the expression of the serine synthesis enzyme PHGDH, which is required for melanoma formation, and can be targeted to sensitize melanoma to dietary serine restriction, providing a melanoma cell-specific treatment strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAPK 对 PHGDH 的诱导是黑色素瘤形成的必要条件,并产生了可操作的代谢脆弱性。
PHGDH是丝氨酸合成途径中的限速酶,它的过表达会促进黑色素瘤的发生、黑色素瘤细胞的增殖以及转移瘤在丝氨酸含量低的环境(如脑部)中的存活。我们在研究中发现,PHGDH 在黑色素瘤细胞中普遍增高,是黑色素瘤发生所必需的。PHGDH扩增解释了PHGDH在一部分黑色素瘤中的过表达,而致癌基因BRAFV600E也通过mTORC1介导的ATF4翻译促进了PHGDH的转录。重要的是,在遗传小鼠黑色素瘤模型中消耗 PHGDH 会阻止肿瘤的形成。除了 BRAFV600E 介导的上调外,外源性丝氨酸限制也进一步诱导了 PHGDH。令人惊讶的是,BRAFV600E抑制剂通过阻止ATF4诱导,减少了丝氨酸限制介导的PHGDH表达。因此,通过将 BRAFV600E 抑制与外源性丝氨酸限制结合起来,可以特异性地使黑色素瘤细胞缺乏丝氨酸,从而在体外促进细胞死亡,在体内减弱黑色素瘤的生长。总之,本研究发现 PHGDH 对黑色素瘤的发生至关重要,并受 BRAFV600E 的调控,揭示了 BRAFV600E 突变黑色素瘤的一个可靶向的弱点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
The Functional Transcriptomic Landscape Informs Therapeutic Strategies in Multiple Myeloma. ACE2 Enhances Sensitivity to PD-L1 Blockade by Inhibiting Macrophage-Induced Immunosuppression and Angiogenesis. PHGDH Induction by MAPK Is Essential for Melanoma Formation and Creates an Actionable Metabolic Vulnerability. FOXR2 Targets LHX6+/DLX+ Neural Lineages to Drive Central Nervous System Neuroblastoma. Stayin' Alive: Targeting Chromatin Regulators of Clonal Hematopoiesis Promotes CD8 T-cell Stemness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1