INformer: Inertial-Based Fusion Transformer for Camera Shake Deblurring

Wenqi Ren;Linrui Wu;Yanyang Yan;Shengyao Xu;Feng Huang;Xiaochun Cao
{"title":"INformer: Inertial-Based Fusion Transformer for Camera Shake Deblurring","authors":"Wenqi Ren;Linrui Wu;Yanyang Yan;Shengyao Xu;Feng Huang;Xiaochun Cao","doi":"10.1109/TIP.2024.3461967","DOIUrl":null,"url":null,"abstract":"Inertial measurement units (IMU) in the capturing device can record the motion information of the device, with gyroscopes measuring angular velocity and accelerometers measuring acceleration. However, conventional deblurring methods seldom incorporate IMU data, and existing approaches that utilize IMU information often face challenges in fully leveraging this valuable data, resulting in noise issues from the sensors. To address these issues, in this paper, we propose a multi-stage deblurring network named INformer, which combines inertial information with the Transformer architecture. Specifically, we design an IMU-image Attention Fusion (IAF) block to merge motion information derived from inertial measurements with blurry image features at the attention level. Furthermore, we introduce an Inertial-Guided Deformable Attention (IGDA) block for utilizing the motion information features as guidance to adaptively adjust the receptive field, which can further refine the corresponding blur kernel for pixels. Extensive experiments on comprehensive benchmarks demonstrate that our proposed method performs favorably against state-of-the-art deblurring approaches.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6045-6056"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10703088/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inertial measurement units (IMU) in the capturing device can record the motion information of the device, with gyroscopes measuring angular velocity and accelerometers measuring acceleration. However, conventional deblurring methods seldom incorporate IMU data, and existing approaches that utilize IMU information often face challenges in fully leveraging this valuable data, resulting in noise issues from the sensors. To address these issues, in this paper, we propose a multi-stage deblurring network named INformer, which combines inertial information with the Transformer architecture. Specifically, we design an IMU-image Attention Fusion (IAF) block to merge motion information derived from inertial measurements with blurry image features at the attention level. Furthermore, we introduce an Inertial-Guided Deformable Attention (IGDA) block for utilizing the motion information features as guidance to adaptively adjust the receptive field, which can further refine the corresponding blur kernel for pixels. Extensive experiments on comprehensive benchmarks demonstrate that our proposed method performs favorably against state-of-the-art deblurring approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INformer:基于惯性的相机抖动去模糊融合变换器
捕捉设备中的惯性测量单元(IMU)可以记录设备的运动信息,陀螺仪可以测量角速度,加速度计可以测量加速度。然而,传统的去模糊方法很少采用 IMU 数据,而现有的利用 IMU 信息的方法在充分利用这些宝贵数据方面往往面临挑战,因为传感器会产生噪声问题。为了解决这些问题,我们在本文中提出了一种名为 INformer 的多级去模糊网络,它将惯性信息与 Transformer 架构相结合。具体来说,我们设计了一个 IMU 图像注意力融合(IAF)区块,将惯性测量得到的运动信息与注意力层面的模糊图像特征进行融合。此外,我们还引入了惯性引导可变形注意力(IGDA)模块,利用运动信息特征作为引导,自适应地调整感受野,从而进一步完善相应的像素模糊内核。在综合基准上进行的大量实验表明,我们提出的方法与最先进的去模糊方法相比表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1