Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-10-03 DOI:10.1038/s41377-024-01645-5
Xiaodong Shi, Sakthi Sanjeev Mohanraj, Veerendra Dhyani, Angela Anna Baiju, Sihao Wang, Jiapeng Sun, Lin Zhou, Anna Paterova, Victor Leong, Di Zhu
{"title":"Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides","authors":"Xiaodong Shi, Sakthi Sanjeev Mohanraj, Veerendra Dhyani, Angela Anna Baiju, Sihao Wang, Jiapeng Sun, Lin Zhou, Anna Paterova, Victor Leong, Di Zhu","doi":"10.1038/s41377-024-01645-5","DOIUrl":null,"url":null,"abstract":"<p>Integrated photon-pair sources are crucial for scalable photonic quantum systems. Thin-film lithium niobate is a promising platform for on-chip photon-pair generation through spontaneous parametric down-conversion (SPDC). However, the device implementation faces practical challenges. Periodically poled lithium niobate (PPLN), despite enabling flexible quasi-phase matching, suffers from poor fabrication reliability and device repeatability, while conventional modal phase matching (MPM) methods yield limited efficiencies due to inadequate mode overlaps. Here, we introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation. It leverages layer-wise polarity inversion through electrical poling to break spatial symmetry and significantly enhance nonlinear interactions for MPM, achieving a notable normalized second-harmonic generation (SHG) conversion efficiency of 4615% W<sup>−1</sup>cm<sup>−2</sup>. Through a cascaded SHG and SPDC process, we demonstrate photon-pair generation with a normalized brightness of 3.1 × 10<sup>6</sup> Hz nm<sup>−1</sup> mW<sup>−2</sup> in a 3.3 mm long LPLN waveguide, surpassing existing on-chip sources under similar operating configurations. Crucially, our LPLN waveguides offer enhanced fabrication reliability and reduced sensitivity to geometric variations and temperature fluctuations compared to PPLN devices. We expect LPLN to become a promising solution for on-chip nonlinear wavelength conversion and non-classical light generation, with immediate applications in quantum communication, networking, and on-chip photonic quantum information processing.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01645-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated photon-pair sources are crucial for scalable photonic quantum systems. Thin-film lithium niobate is a promising platform for on-chip photon-pair generation through spontaneous parametric down-conversion (SPDC). However, the device implementation faces practical challenges. Periodically poled lithium niobate (PPLN), despite enabling flexible quasi-phase matching, suffers from poor fabrication reliability and device repeatability, while conventional modal phase matching (MPM) methods yield limited efficiencies due to inadequate mode overlaps. Here, we introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation. It leverages layer-wise polarity inversion through electrical poling to break spatial symmetry and significantly enhance nonlinear interactions for MPM, achieving a notable normalized second-harmonic generation (SHG) conversion efficiency of 4615% W−1cm−2. Through a cascaded SHG and SPDC process, we demonstrate photon-pair generation with a normalized brightness of 3.1 × 106 Hz nm−1 mW−2 in a 3.3 mm long LPLN waveguide, surpassing existing on-chip sources under similar operating configurations. Crucially, our LPLN waveguides offer enhanced fabrication reliability and reduced sensitivity to geometric variations and temperature fluctuations compared to PPLN devices. We expect LPLN to become a promising solution for on-chip nonlinear wavelength conversion and non-classical light generation, with immediate applications in quantum communication, networking, and on-chip photonic quantum information processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层抛光铌酸锂纳米光子波导中的高效光子对生成
集成光子对源对于可扩展的光子量子系统至关重要。铌酸锂薄膜是通过自发参量下变频(SPDC)产生片上光子对的一个前景广阔的平台。然而,器件的实现面临着实际挑战。周期性极化铌酸锂(PPLN)虽然能实现灵活的准相位匹配,但制造可靠性和器件可重复性较差,而传统的模态相位匹配(MPM)方法由于模态重叠不足而导致效率有限。在此,我们介绍一种层极性铌酸锂(LPLN)纳米光子波导,用于高效光子对生成。它通过电极化利用层向极性反转来打破空间对称性并显著增强 MPM 的非线性相互作用,实现了 4615% W-1cm-2 的显著归一化二次谐波发生(SHG)转换效率。通过级联 SHG 和 SPDC 工艺,我们在 3.3 毫米长的 LPLN 波导中演示了归一化亮度为 3.1 × 106 Hz nm-1 mW-2 的光子对生成,超越了类似工作配置下的现有片上光源。最重要的是,与 PPLN 器件相比,我们的 LPLN 波导提高了制造可靠性,降低了对几何变化和温度波动的敏感性。我们预计 LPLN 将成为片上非线性波长转换和非经典光生成的一种前景广阔的解决方案,可立即应用于量子通信、网络和片上光子量子信息处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Issue Editorial Masthead Issue Publication Information In This Issue, Volume 15, Issue 11 The brightest multi-colour phonon lasers If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1