Biomimetic Multi-Interface Design of Raspberry-like Absorbent: Gd-doped FeNi3@Covalent Organic Framework Derivatives for Efficient Electromagnetic Attenuation.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-03 DOI:10.1002/smtd.202401299
Ruizhe Hu, Xue He, Yuqi Luo, Chongbo Liu, Shiyu Liu, Xintong Lv, Jinxi Yan, Yuhui Peng, Mingyue Yuan, Renchao Che
{"title":"Biomimetic Multi-Interface Design of Raspberry-like Absorbent: Gd-doped FeNi<sub>3</sub>@Covalent Organic Framework Derivatives for Efficient Electromagnetic Attenuation.","authors":"Ruizhe Hu, Xue He, Yuqi Luo, Chongbo Liu, Shiyu Liu, Xintong Lv, Jinxi Yan, Yuhui Peng, Mingyue Yuan, Renchao Che","doi":"10.1002/smtd.202401299","DOIUrl":null,"url":null,"abstract":"<p><p>Structural design and interface regulation are useful strategies for achieving strong electromagnetic wave absorption (EMWA) and broad effective absorption bandwidth (EAB). Herein, a monomer-mediated strategy is employed to control the growth of covalent organic framework (COF) wrapping flower-shaped Gd-doped FeNi<sub>3</sub> (GFN), and a novel raspberry-like absorbent based on biomimetic design is fabricated by thermal catalysis. Further, a unique dielectric-magnetic synergistic system is constructed by utilizing the COF-derived nitrogen-doped porous carbon (NPC) as the shell and anisotropic GFN as the core. The electromagnetic parameters of the GFN@NPC composites can be tuned by adjusting the proportions of GFN and NPC. Off-axis electron holography results further clarify the interface polarization and microscale magnetic interactions affecting the EMW loss mechanism. As a result, the GFN@NPC samples exhibit broad EMWA performance. The EAB values of all GFN@NPC composites reach up to 6.0 GHz, with the GFN@NPC-2 sample showing a minimum reflection loss (RL<sub>min</sub>) of -69.6 dB at 1.68 mm. In addition, GFN@NPC-2 achieves a maximum radar cross-section (RCS) reduction of 29.75 dB·m<sup>2</sup>. A multi-layer gradient structure is also constructed using metamaterial simulation to achieve an ultra-wide EAB of 12.24 GHz. Overall, this work provides a novel bio-inspired design strategy to develop high-performance EMWA materials.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401299","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Structural design and interface regulation are useful strategies for achieving strong electromagnetic wave absorption (EMWA) and broad effective absorption bandwidth (EAB). Herein, a monomer-mediated strategy is employed to control the growth of covalent organic framework (COF) wrapping flower-shaped Gd-doped FeNi3 (GFN), and a novel raspberry-like absorbent based on biomimetic design is fabricated by thermal catalysis. Further, a unique dielectric-magnetic synergistic system is constructed by utilizing the COF-derived nitrogen-doped porous carbon (NPC) as the shell and anisotropic GFN as the core. The electromagnetic parameters of the GFN@NPC composites can be tuned by adjusting the proportions of GFN and NPC. Off-axis electron holography results further clarify the interface polarization and microscale magnetic interactions affecting the EMW loss mechanism. As a result, the GFN@NPC samples exhibit broad EMWA performance. The EAB values of all GFN@NPC composites reach up to 6.0 GHz, with the GFN@NPC-2 sample showing a minimum reflection loss (RLmin) of -69.6 dB at 1.68 mm. In addition, GFN@NPC-2 achieves a maximum radar cross-section (RCS) reduction of 29.75 dB·m2. A multi-layer gradient structure is also constructed using metamaterial simulation to achieve an ultra-wide EAB of 12.24 GHz. Overall, this work provides a novel bio-inspired design strategy to develop high-performance EMWA materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树莓状吸收体的仿生多界面设计:用于高效电磁衰减的掺钆 FeNi3@共价有机框架衍生物。
结构设计和界面调节是实现强电磁波吸收(EMWA)和宽有效吸收带宽(EAB)的有效策略。本文采用单体介导策略控制共价有机框架(COF)包裹花形掺钕铁硼(GFN)的生长,并通过热催化制造出基于仿生设计的新型树莓状吸波材料。此外,还利用 COF 衍生的掺氮多孔碳(NPC)作为外壳,各向异性的 GFN 作为内核,构建了独特的介电-磁协同系统。GFN@NPC 复合材料的电磁参数可通过调整 GFN 和 NPC 的比例进行调节。离轴电子全息成像结果进一步阐明了影响电磁波损耗机制的界面极化和微尺度磁相互作用。因此,GFN@NPC 样品具有广泛的电磁波损耗性能。所有 GFN@NPC 复合材料的 EAB 值均高达 6.0 GHz,其中 GFN@NPC-2 样品在 1.68 mm 时的最小反射损耗 (RLmin) 为 -69.6 dB。此外,GFN@NPC-2 还将雷达截面(RCS)最大降低了 29.75 dB-m2。还利用超材料模拟构建了多层梯度结构,实现了 12.24 GHz 的超宽 EAB。总之,这项研究为开发高性能 EMWA 材料提供了一种新颖的生物启发设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Fourier Ptychographic Coherent Anti-Stokes Raman Scattering Microscopy with Point-Scanning for Super-Resolution Imaging. Li-Sb Alloy Formation Strategy to Improve Interfacial Stability of All-Solid-State Lithium Batteries. Biomimetic Multi-Interface Design of Raspberry-like Absorbent: Gd-doped FeNi3@Covalent Organic Framework Derivatives for Efficient Electromagnetic Attenuation. Impact Deposition of a Single Droplet of Low-Melting-Point Alloy as the Top Electrode for Organic Photovoltaics. Disodium Malate Electrolyte Additive Facilitates Dendrite-Free Zinc Anode: Deposition Kinetics and Interface Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1