Enhancing Ni oxidation reconstruction in Ni3Fe nanoalloy for efficient Electro-Oxidation of 5-Hydroxymethylfurfural

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-10-04 DOI:10.1016/j.cej.2024.156320
Yongzhi Xiong, Shengchun Hu, Jianchun Jiang, Yajun Liu, Wei Zhao, Xialin Ji, Changzhou Chen, Mengmeng Fan, Kui Wang
{"title":"Enhancing Ni oxidation reconstruction in Ni3Fe nanoalloy for efficient Electro-Oxidation of 5-Hydroxymethylfurfural","authors":"Yongzhi Xiong, Shengchun Hu, Jianchun Jiang, Yajun Liu, Wei Zhao, Xialin Ji, Changzhou Chen, Mengmeng Fan, Kui Wang","doi":"10.1016/j.cej.2024.156320","DOIUrl":null,"url":null,"abstract":"Herein, a novel ball milling-pyrolysis strategy was proposed for preparing a highly dispersed Ni<sub>3</sub>Fe nanoalloy catalyst (Ni<sub>3</sub>Fe@NC) used for 5-hydroxymethylfurfural (HMF) electro-oxidation reaction. The Ni<sub>3</sub>Fe@NC delivered a high current density of 100 mA cm<sup>−2</sup> at a low potential of 1.467 V vs RHE, with a HMF conversion rate of over 99.6 %, 2,5-furan dicarboxylic acid (FDCA) selectivity of 97.1 % and a Faraday efficiency of 96.7 %. Theoretical calculations, in-situ EIS, quasi-in-situ XRD and XPS demonstrated that Fe-doping optimizes the electronic structure of Ni<sub>3</sub>Fe@NC and regulates its <em>d</em>-band center, which not only promoted the reconstruction of Ni<sub>3</sub>Fe@NC to form high-oxidation-activity Ni<sup>2+δ</sup> and Ni<sup>3+δ</sup> species but also reduced the reaction barrier of the key rate-determining step (*5-Hydroxymethyl-2-furancarboxylic acid (HMFCA)→*5-formyl-2-furancarboxylic acid (FFCA)) during HMFOR. Based on this interesting work, we provided a facile macroscopic preparation strategy on highly dispersed nanoalloy catalyst for efficient electro-oxidation of HMF.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.156320","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a novel ball milling-pyrolysis strategy was proposed for preparing a highly dispersed Ni3Fe nanoalloy catalyst (Ni3Fe@NC) used for 5-hydroxymethylfurfural (HMF) electro-oxidation reaction. The Ni3Fe@NC delivered a high current density of 100 mA cm−2 at a low potential of 1.467 V vs RHE, with a HMF conversion rate of over 99.6 %, 2,5-furan dicarboxylic acid (FDCA) selectivity of 97.1 % and a Faraday efficiency of 96.7 %. Theoretical calculations, in-situ EIS, quasi-in-situ XRD and XPS demonstrated that Fe-doping optimizes the electronic structure of Ni3Fe@NC and regulates its d-band center, which not only promoted the reconstruction of Ni3Fe@NC to form high-oxidation-activity Ni2+δ and Ni3+δ species but also reduced the reaction barrier of the key rate-determining step (*5-Hydroxymethyl-2-furancarboxylic acid (HMFCA)→*5-formyl-2-furancarboxylic acid (FFCA)) during HMFOR. Based on this interesting work, we provided a facile macroscopic preparation strategy on highly dispersed nanoalloy catalyst for efficient electro-oxidation of HMF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强 Ni3Fe 纳米合金中 Ni 的氧化重构,实现 5-羟甲基糠醛的高效电氧化
本文提出了一种新型球磨-热解策略,用于制备高度分散的 Ni3Fe 纳米合金催化剂(Ni3Fe@NC),用于 5-hydroxymethylfurfural (HMF) 电氧化反应。Ni3Fe@NC 在 1.467 V vs RHE 的低电位条件下可产生 100 mA cm-2 的高电流密度,HMF 转化率超过 99.6%,2,5-呋喃二甲酸 (FDCA) 选择性为 97.1%,法拉第效率为 96.7%。理论计算、原位 EIS、准原位 XRD 和 XPS 均表明,掺杂铁优化了 Ni3Fe@NC 的电子结构,并调节了其 d 带中心、这不仅促进了 Ni3Fe@NC 重构形成高氧化活性的 Ni2+δ 和 Ni3+δ 物种,还降低了 HMFOR 过程中关键速率决定步骤(*5-羟甲基-2-呋喃羧酸 (HMFCA)→*5- 甲酰基-2-呋喃羧酸 (FFCA))的反应障碍。基于这项有趣的工作,我们提供了一种用于高效电氧化 HMF 的高分散纳米合金催化剂的简便宏观制备策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Novel electrocatalyst with abundant oxygen vacancies Enabling efficient Two-Electron water oxidation reaction for H2O2 synthesis Lipoic acid-functionalized platycodin D nanocarrier improves mitochondrial dysfunction and reverses diabetes Enhancing Ni oxidation reconstruction in Ni3Fe nanoalloy for efficient Electro-Oxidation of 5-Hydroxymethylfurfural Co-porphyrin-based metal-organic framework for light-driven efficient green conversion of CO2 and epoxides P-functionalization of Ni Fe − Electrocatalysts from Prussian blue analogue for enhanced anode in anion exchange membrane water electrolysers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1