Zhuang Liu , Chang Liu , Caihong Fan , Runze Li , Shiqi Zhang , Jia Liu , Bo Li , Shengzheng Zhang , Lihong Guo , Xudong Wang , Zhi Qi , Yanna Shen
{"title":"E3 ubiquitin ligase DTX2 fosters ferroptosis resistance via suppressing NCOA4-mediated ferritinophagy in non-small cell lung cancer","authors":"Zhuang Liu , Chang Liu , Caihong Fan , Runze Li , Shiqi Zhang , Jia Liu , Bo Li , Shengzheng Zhang , Lihong Guo , Xudong Wang , Zhi Qi , Yanna Shen","doi":"10.1016/j.drup.2024.101154","DOIUrl":null,"url":null,"abstract":"<div><div>Non-small cell lung cancer (NSCLC) remains the foremost contributor to cancer-related fatalities globally, with limited effective therapeutic modalities. Recent research has shed light on the role of ferroptosis in various types of cancers, offering a potential avenue for improving cancer therapy. Herein, we identified E3 ubiquitin ligase deltex 2 (DTX2) as a potential therapeutic target candidate implicated in promoting NSCLC cell growth by inhibiting ferroptosis. Our investigation revealed a significant upregulation of DTX2 in NSCLC cells and tissues, which was correlated with poor prognosis. Downregulation of DTX2 suppressed NSCLC cell growth both <em>in vitro</em> and <em>in vivo</em>, while its overexpression accelerated cell proliferation. Moreover, knockdown of DTX2 promoted ferroptosis in NSCLC cells, which was mitigated by DTX2 overexpression. Mechanistically, we uncovered that DTX2 binds to nuclear receptor coactivator 4 (NCOA4), facilitating its ubiquitination and degradation via the K48 chain, which subsequently dampens NCOA4-driven ferritinophagy and ferroptosis in NSCLC cells. Notably, DTX2 knockdown promotes cisplatin-induced ferroptosis and overcomes drug resistance of NSCLC cells. These findings underscore the critical role of DTX2 in regulating ferroptosis and NCOA4-mediated ferritinophagy, suggesting its potential as a novel therapeutic target for NSCLC.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101154"},"PeriodicalIF":15.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764624001122","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC) remains the foremost contributor to cancer-related fatalities globally, with limited effective therapeutic modalities. Recent research has shed light on the role of ferroptosis in various types of cancers, offering a potential avenue for improving cancer therapy. Herein, we identified E3 ubiquitin ligase deltex 2 (DTX2) as a potential therapeutic target candidate implicated in promoting NSCLC cell growth by inhibiting ferroptosis. Our investigation revealed a significant upregulation of DTX2 in NSCLC cells and tissues, which was correlated with poor prognosis. Downregulation of DTX2 suppressed NSCLC cell growth both in vitro and in vivo, while its overexpression accelerated cell proliferation. Moreover, knockdown of DTX2 promoted ferroptosis in NSCLC cells, which was mitigated by DTX2 overexpression. Mechanistically, we uncovered that DTX2 binds to nuclear receptor coactivator 4 (NCOA4), facilitating its ubiquitination and degradation via the K48 chain, which subsequently dampens NCOA4-driven ferritinophagy and ferroptosis in NSCLC cells. Notably, DTX2 knockdown promotes cisplatin-induced ferroptosis and overcomes drug resistance of NSCLC cells. These findings underscore the critical role of DTX2 in regulating ferroptosis and NCOA4-mediated ferritinophagy, suggesting its potential as a novel therapeutic target for NSCLC.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research