首页 > 最新文献

Drug Resistance Updates最新文献

英文 中文
O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma O-GlcNAcylation 对 RIPK1 依赖性细胞凋亡的调控决定了肾细胞癌对舒尼替尼的敏感性
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-12 DOI: 10.1016/j.drup.2024.101150

Receptor interacting protein kinase 1 (RIPK1) has emerged as a key regulatory molecule that influences the balance between cell death and cell survival. Under external stress, RIPK1 determines whether a cell undergoes RIPK-dependent apoptosis (RDA) or survives by activating NF-κB signaling. However, the role and mechanisms of RIPK1 on sunitinib sensitivity in renal cell carcinoma (RCC) remain elusive. In this study, we demonstrated that the O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of RIPK1 induces sunitinib resistance in RCC by inhibiting RDA. O-GlcNAc transferase (OGT) specifically interacts with RIPK1 through its tetratricopeptide repeats (TPR) domain and facilitates RIPK1 O-GlcNAcylation. The O-GlcNAcylation of RIPK1 at Ser331, Ser440 and Ser669 regulates RIPK1 ubiquitination and the formation of the RIPK1/FADD/Caspase-8 complex, thereby inhibiting sunitinib-induced RDA in RCC. Site-specific depletion of O-GlcNAcylation on RIPK1 affects the formation of the RIPK1/FADD/Caspase 8 complex, leading to increased sunitinib sensitivity in RCC.

Our data highlight the significance of aberrant RIPK1 O-GlcNAcylation in the development of sunitinib resistance and indicate that targeting RIPK1 O-GlcNAcylation could be a promising therapeutic strategy for RCC.

受体相互作用蛋白激酶1(RIPK1)已成为影响细胞死亡与存活之间平衡的关键调节分子。在外部压力下,RIPK1通过激活NF-κB信号来决定细胞是进行RIPK依赖性凋亡(RDA)还是存活。然而,RIPK1 在肾细胞癌(RCC)中对舒尼替尼敏感性的作用和机制仍不明确。在这项研究中,我们证实了RIPK1的O-连接β-N-乙酰葡糖胺修饰(O-GlcNAcylation)通过抑制RDA诱导RCC的舒尼替尼耐药性。O-GlcNAc转移酶(OGT)通过其四肽重复序列(TPR)结构域与RIPK1特异性相互作用,促进RIPK1的O-GlcNAc酰化。RIPK1在Ser331、Ser440和Ser669处的O-GlcNAcylation调节RIPK1泛素化和RIPK1/FADD/Caspase-8复合物的形成,从而抑制舒尼替尼诱导的RCC中的RDA。我们的数据强调了RIPK1 O-GlcNAcylation异常在舒尼替尼耐药性发生过程中的重要意义,并表明靶向RIPK1 O-GlcNAcylation可能是一种很有前景的RCC治疗策略。
{"title":"O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma","authors":"","doi":"10.1016/j.drup.2024.101150","DOIUrl":"10.1016/j.drup.2024.101150","url":null,"abstract":"<div><p>Receptor interacting protein kinase 1 (RIPK1) has emerged as a key regulatory molecule that influences the balance between cell death and cell survival. Under external stress, RIPK1 determines whether a cell undergoes RIPK-dependent apoptosis (RDA) or survives by activating NF-κB signaling. However, the role and mechanisms of RIPK1 on sunitinib sensitivity in renal cell carcinoma (RCC) remain elusive. In this study, we demonstrated that the O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of RIPK1 induces sunitinib resistance in RCC by inhibiting RDA. O-GlcNAc transferase (OGT) specifically interacts with RIPK1 through its tetratricopeptide repeats (TPR) domain and facilitates RIPK1 O-GlcNAcylation. The O-GlcNAcylation of RIPK1 at Ser<sup>331</sup>, Ser<sup>440</sup> and Ser<sup>669</sup> regulates RIPK1 ubiquitination and the formation of the RIPK1/FADD/Caspase-8 complex, thereby inhibiting sunitinib-induced RDA in RCC. Site-specific depletion of O-GlcNAcylation on RIPK1 affects the formation of the RIPK1/FADD/Caspase 8 complex, leading to increased sunitinib sensitivity in RCC.</p><p>Our data highlight the significance of aberrant RIPK1 O-GlcNAcylation in the development of sunitinib resistance and indicate that targeting RIPK1 O-GlcNAcylation could be a promising therapeutic strategy for RCC.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The important role of lactylation in regulating DNA damage repair and tumor chemotherapy resistance 乳化作用在调节 DNA 损伤修复和肿瘤化疗耐药性方面的重要作用
IF 24.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-06 DOI: 10.1016/j.drup.2024.101148
Jia Li, Zhe-Sheng Chen, Yihang Pan, Leli Zeng
{"title":"The important role of lactylation in regulating DNA damage repair and tumor chemotherapy resistance","authors":"Jia Li, Zhe-Sheng Chen, Yihang Pan, Leli Zeng","doi":"10.1016/j.drup.2024.101148","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101148","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":24.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmid-borne tigecycline resistance gene tet(X4) in Salmonella enterica and Escherichia coli isolates from a pediatric patient with diarrhea 从一名腹泻儿科患者体内分离出的肠炎沙门氏菌和大肠埃希氏菌中发现质粒携带的替加环素抗性基因 tet(X4)
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-02 DOI: 10.1016/j.drup.2024.101145
{"title":"Plasmid-borne tigecycline resistance gene tet(X4) in Salmonella enterica and Escherichia coli isolates from a pediatric patient with diarrhea","authors":"","doi":"10.1016/j.drup.2024.101145","DOIUrl":"10.1016/j.drup.2024.101145","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of staphylococcal resistance to clinically relevant antibiotics 葡萄球菌对临床相关抗生素的耐药性机制
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-31 DOI: 10.1016/j.drup.2024.101147

Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.

金黄色葡萄球菌是一种臭名昭著的病原体,具有多种毒力,由于它能对多种临床相关抗生素产生耐药机制,因此对目前的抗生素治疗方法构成了巨大挑战。在这篇综述中,我们仔细剖析了金黄色葡萄球菌对临床常用的各种抗生素的耐药机制。文章通过错综复杂的分子途径,阐明了金黄色葡萄球菌逃避β-内酰胺类、万古霉素、达托霉素、利奈唑胺等抗生素疗效的机制。对每种抗生素的作用机制、对细菌生理的影响以及金黄色葡萄球菌采取的相应抗药性策略都进行了仔细研究。本综述综合了与这些抗药性机制有关的知识,旨在提供一个全面的资源,为开发金黄色葡萄球菌感染的创新治疗策略和替代疗法奠定基础。了解抗生素耐药性不断演变的情况对于制定有效的对策来对抗这种可怕的病原体至关重要。
{"title":"Mechanism of staphylococcal resistance to clinically relevant antibiotics","authors":"","doi":"10.1016/j.drup.2024.101147","DOIUrl":"10.1016/j.drup.2024.101147","url":null,"abstract":"<div><p><em>Staphylococcus aureus</em>, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by <em>S. aureus</em> against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which <em>S. aureus</em> evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, <em>etc</em>. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by <em>S. aureus</em>. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for <em>S. aureus</em> infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624001055/pdfft?md5=12f715097caabdafe7529ca70e6a87b4&pid=1-s2.0-S1368764624001055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma 揭示胰腺导管腺癌的抗药性。
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-30 DOI: 10.1016/j.drup.2024.101146

Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.

尽管治疗胰腺导管腺癌(PDAC)的介入策略(手术、化疗、放疗和免疫疗法)不断取得进展,但难治性表型的出现仍是一个重大挑战。胰腺导管腺癌对各种治疗模式的耐药性来自于内在和后天因素的综合作用,可归因于癌细胞的内在和外在机制。耐药性的关键决定因素包括驱动癌细胞干性和代谢适应性的致癌信号转导和表观遗传修饰、导致 ECM 沉积改变的 CAF 介导的基质生成、机械传导以及分泌组和免疫逃避。我们回顾了目前对这些在 PDAC 微环境中运行的多方面机制的理解,这些机制影响着对化疗、放疗和免疫治疗方案的反应。然后,我们介绍了从这些研究中吸取的经验教训如何指导我们发现新的治疗方案,以预防、延缓或逆转耐药性,实现持久的临床反应。
{"title":"Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma","authors":"","doi":"10.1016/j.drup.2024.101146","DOIUrl":"10.1016/j.drup.2024.101146","url":null,"abstract":"<div><p>Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Un-methylation of NUDT21 represses docosahexaenoic acid biosynthesis contributing to enzalutamide resistance in prostate cancer NUDT21 的非甲基化抑制了二十二碳六烯酸的生物合成,导致前列腺癌对恩杂鲁胺产生耐药性
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-24 DOI: 10.1016/j.drup.2024.101144

Aims

The recent approval of enzalutamide for metastatic castration-sensitive prostate cancer underscores its growing clinical significance, raising concerns about emerging resistance and limited treatment options. While the reactivation of the androgen receptor (AR) and other genes plays a role in enzalutamide resistance, identifications of novel underlying mechanism with therapeutic potential in enzalutamide-resistant (EnzaR) cells remain largely elusive.

Methods

Drug-resistant prostate cancer cell lines, animal models, and organoids were utilized to examine NUDT21 function by transcriptomic and metabolomic analyses through loss-of-function and gain-of-function assays. Notably, a mono-methylation monoclonal antibody and conditional-knockin transgenic mouse model of NUDT21 were generated for evaluating its function.

Results

NUDT21 overexpression acts as a crucial alternative polyadenylation (APA) mediator, supported by its oncogenic role in prostate cancer. PRMT7-mediated mono-methylation of NUDT21 induces a shift in 3’UTR usage, reducing oncogenicity. In contrast, its un-methylation promotes cancer growth and cuproptosis insensitivity in EnzaR cells by exporting toxic copper and suppressing docosahexaenoic acid (DHA) biosynthesis. Crucially, NUDT21 inhibition or DHA supplementation with copper ionophore holds therapeutic promise for EnzaR cells.

Conclusions

The un-methylation of NUDT21-mediated 3’UTR shortening unveils a novel mechanism for enzalutamide resistance, and our findings offer innovative strategies for advancing the treatment of prostate cancer patients experiencing enzalutamide resistance.

目的最近恩杂鲁胺被批准用于治疗转移性阉割敏感性前列腺癌,这凸显了它日益增长的临床意义,同时也引起了人们对新出现的耐药性和治疗选择有限的担忧。虽然雄激素受体(AR)和其他基因的重新激活在恩扎鲁胺耐药性中起着一定作用,但在恩扎鲁胺耐药(EnzaR)细胞中发现具有治疗潜力的新的潜在机制在很大程度上仍是未知数。方法利用耐药前列腺癌细胞系、动物模型和器官组织,通过功能缺失和功能增益试验,通过转录组和代谢组分析来研究NUDT21的功能。结果NUDT21过表达是一种关键的替代多腺苷酸化(APA)介导因子,它在前列腺癌中的致癌作用支持了这一点。PRMT7 介导的 NUDT21 单甲基化诱导了 3'UTR 使用的转变,从而降低了致癌性。相反,NUDT21 的非甲基化会通过输出有毒铜和抑制二十二碳六烯酸(DHA)的生物合成,促进 EnzaR 细胞的癌症生长和杯突症不敏感性。结论NUDT21介导的3'UTR缩短的非甲基化揭示了恩杂鲁胺耐药的新机制,我们的发现为推进恩杂鲁胺耐药前列腺癌患者的治疗提供了创新策略。
{"title":"Un-methylation of NUDT21 represses docosahexaenoic acid biosynthesis contributing to enzalutamide resistance in prostate cancer","authors":"","doi":"10.1016/j.drup.2024.101144","DOIUrl":"10.1016/j.drup.2024.101144","url":null,"abstract":"<div><h3>Aims</h3><p>The recent approval of enzalutamide for metastatic castration-sensitive prostate cancer underscores its growing clinical significance, raising concerns about emerging resistance and limited treatment options. While the reactivation of the androgen receptor (AR) and other genes plays a role in enzalutamide resistance, identifications of novel underlying mechanism with therapeutic potential in enzalutamide-resistant (EnzaR) cells remain largely elusive.</p></div><div><h3>Methods</h3><p>Drug-resistant prostate cancer cell lines, animal models, and organoids were utilized to examine NUDT21 function by transcriptomic and metabolomic analyses through loss-of-function and gain-of-function assays. Notably, a mono-methylation monoclonal antibody and conditional-knockin transgenic mouse model of NUDT21 were generated for evaluating its function.</p></div><div><h3>Results</h3><p>NUDT21 overexpression acts as a crucial alternative polyadenylation (APA) mediator, supported by its oncogenic role in prostate cancer. PRMT7-mediated mono-methylation of NUDT21 induces a shift in 3’UTR usage, reducing oncogenicity. In contrast, its un-methylation promotes cancer growth and cuproptosis insensitivity in EnzaR cells by exporting toxic copper and suppressing docosahexaenoic acid (DHA) biosynthesis. Crucially, NUDT21 inhibition or DHA supplementation with copper ionophore holds therapeutic promise for EnzaR cells.</p></div><div><h3>Conclusions</h3><p>The un-methylation of NUDT21-mediated 3’UTR shortening unveils a novel mechanism for enzalutamide resistance, and our findings offer innovative strategies for advancing the treatment of prostate cancer patients experiencing enzalutamide resistance.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136876462400102X/pdfft?md5=8d5415fa3df7d10f5e75ab1ffb7c812f&pid=1-s2.0-S136876462400102X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-AMRtracker: A novel toolkit to monitor the antimicrobial resistance gene transfer in fecal microbiota CRISPR-AMRtracker:监测粪便微生物群中抗菌药耐药性基因转移的新型工具包
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-24 DOI: 10.1016/j.drup.2024.101142

The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.

抗生素耐药基因(ARGs)的传播,尤其是质粒上携带的抗生素耐药基因的传播,对全球健康构成了重大威胁。然而,由于缺乏有效的追踪工具,人们对 ARGs 在人类、动物和环境微生物群落中的传播范围和频率还不甚了解。我们开发了一种新型荧光追踪工具--CRISPR-AMRtracker,用于研究 ARG 的转移。它结合了 CRISPR/Cas9 荧光标记、荧光激活细胞分拣、16S rRNA 基因测序和微生物群落分析。CRISPR-AMRtracker 将荧光标签整合到 ARGs 的下游,从而能够在不影响宿主细胞的抗生素敏感性、适应性、连接和转座的情况下跟踪 ARG 的转移。值得注意的是,我们的实验证明了 sfGFP 标记的质粒携带的 mcr-1 可以在粪便样本中的不同细菌物种间转移。这种创新方法有望揭示 ARG 的传播动态,并为制定有效策略以缓解不断升级的抗生素耐药性威胁提供有价值的见解。
{"title":"CRISPR-AMRtracker: A novel toolkit to monitor the antimicrobial resistance gene transfer in fecal microbiota","authors":"","doi":"10.1016/j.drup.2024.101142","DOIUrl":"10.1016/j.drup.2024.101142","url":null,"abstract":"<div><p>The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that <em>sfGFP</em>-tagged plasmid-borne <em>mcr-1</em> can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionising infection control: building the next generation of phage banks 彻底改变感染控制:建立下一代噬菌体库
IF 24.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-22 DOI: 10.1016/j.drup.2024.101143
Braira Wahid, Muhammad Salman Tiwana, Akhtar Ali
{"title":"Revolutionising infection control: building the next generation of phage banks","authors":"Braira Wahid, Muhammad Salman Tiwana, Akhtar Ali","doi":"10.1016/j.drup.2024.101143","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101143","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":24.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion event mediated by IS903B between chromosome and plasmid in two MCR-9- and KPC-2-co-producing Klebsiella pneumoniae isolates 由 IS903B 介导的两种 MCR-9 和 KPC-2 共同产生的肺炎克雷伯菌分离株染色体与质粒之间的融合事件
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-17 DOI: 10.1016/j.drup.2024.101139

Herein, we first isolated two MCR-9- and KPC-2-co-producing K. pneumoniae isolates. Notably, we observed a fusion event between the chromosome and plasmid, mediated by IS903B, in these two strains. This cointegration of chromosomes and plasmids introduces a new mode of transmission for antimicrobial resistance genes.

在本文中,我们首次分离到了两株同时产生 MCR-9 和 KPC-2 的肺炎克雷伯菌分离株。值得注意的是,我们在这两株菌株中观察到了由 IS903B 介导的染色体与质粒之间的融合事件。这种染色体和质粒的共整合为抗菌药耐药性基因的传播引入了一种新的模式。
{"title":"Fusion event mediated by IS903B between chromosome and plasmid in two MCR-9- and KPC-2-co-producing Klebsiella pneumoniae isolates","authors":"","doi":"10.1016/j.drup.2024.101139","DOIUrl":"10.1016/j.drup.2024.101139","url":null,"abstract":"<div><p>Herein, we first isolated two MCR-9- and KPC-2-co-producing <em>K. pneumoniae</em> isolates. Notably, we observed a fusion event between the chromosome and plasmid, mediated by IS<em>903B</em>, in these two strains. This cointegration of chromosomes and plasmids introduces a new mode of transmission for antimicrobial resistance genes.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the secrets: Evolution of resistance mediated by membrane proteins 揭开秘密膜蛋白介导的抗药性进化
IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-16 DOI: 10.1016/j.drup.2024.101140

Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.

膜蛋白介导的抗药性是一个跨越医学、农业和环境科学等领域的多学科挑战。了解其复杂性并制定创新策略,对于治疗癌症等疾病和管理农业中的抗药性害虫至关重要。本文探讨了不同生物抗药性机制的双重性质:一方面,动物、细菌、真菌、植物和昆虫表现出趋同进化,从而发展出类似的抗性机制。另一方面,受不同环境压力和生物体结构差异的影响,它们也表现出不同的抗性特征。膜蛋白介导的抗性机制在动物、细菌、真菌、植物和昆虫中普遍存在,反映了它们为应对相似的生存挑战而通过趋同进化进化出的共同生存策略。然而,生态环境和生物特征的差异导致了对抗性的不同反应。因此,研究这些差异不仅能加深我们对适应性抗药性机制的理解,还能为解决抗药性问题和推动药物开发提供重要的理论支持和见解。
{"title":"Unraveling the secrets: Evolution of resistance mediated by membrane proteins","authors":"","doi":"10.1016/j.drup.2024.101140","DOIUrl":"10.1016/j.drup.2024.101140","url":null,"abstract":"<div><p>Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000980/pdfft?md5=f32ad03042bf67bda91992e6b1153808&pid=1-s2.0-S1368764624000980-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Drug Resistance Updates
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1