Pub Date : 2025-04-21DOI: 10.1016/j.drup.2025.101248
Yuxiu Sun , He Wang , Zhe Cui , Tingting Yu , Yuanming Song , Haolai Gao , Ruihong Tang , Xinlei Wang , Binru Li , Wenxin Li , Zhe Wang
Lactate plays a crucial role as an energy substrate, metabolite, and signaling molecule in cancer. Lactate has long been considered a byproduct of glycolysis. Still, the lactate shuttle hypothesis has changed the lactate paradigm, revealing the implications of lactate in cellular metabolism and cellular communications that can transcend the compartment barrier and occur within and between different cells, tissues, and organs. Due to the Warburg effect, the tumor produces a large amount of lactate, thus creating a low-nutrition, hypoxic, and low-pH tumor microenvironment (TME). Consequently, immunosuppressive networks are built to acquire immune evasion potential and regulate tumor growth. Lactylation is a newly discovered post-translational modification of lysine residues with the capacity for transcriptional regulation via histone modification and modulation of non-histone protein functions, which links gene regulation to cellular metabolism by aberrant metabolism activity and epigenetic modification. There is growing evidence that lactylation plays a crucial role in cancer progression and drug resistance. Targeting lactylation enzymes or metabolic pathways has shown promising effects in suppressing cancer progression and drug resistance, highlighting the therapeutic potential of this modification. Therefore, in this review, we offer a systematic overview of lactate homeostasis in physiological and pathological processes as well as discuss the influence of lactylation in cancer progression and drug resistance and underlying molecular mechanisms, providing a theoretical basis for further research.
{"title":"Lactylation in cancer progression and drug resistance","authors":"Yuxiu Sun , He Wang , Zhe Cui , Tingting Yu , Yuanming Song , Haolai Gao , Ruihong Tang , Xinlei Wang , Binru Li , Wenxin Li , Zhe Wang","doi":"10.1016/j.drup.2025.101248","DOIUrl":"10.1016/j.drup.2025.101248","url":null,"abstract":"<div><div>Lactate plays a crucial role as an energy substrate, metabolite, and signaling molecule in cancer. Lactate has long been considered a byproduct of glycolysis. Still, the lactate shuttle hypothesis has changed the lactate paradigm, revealing the implications of lactate in cellular metabolism and cellular communications that can transcend the compartment barrier and occur within and between different cells, tissues, and organs. Due to the Warburg effect, the tumor produces a large amount of lactate, thus creating a low-nutrition, hypoxic, and low-pH tumor microenvironment (TME). Consequently, immunosuppressive networks are built to acquire immune evasion potential and regulate tumor growth. Lactylation is a newly discovered post-translational modification of lysine residues with the capacity for transcriptional regulation via histone modification and modulation of non-histone protein functions, which links gene regulation to cellular metabolism by aberrant metabolism activity and epigenetic modification. There is growing evidence that lactylation plays a crucial role in cancer progression and drug resistance. Targeting lactylation enzymes or metabolic pathways has shown promising effects in suppressing cancer progression and drug resistance, highlighting the therapeutic potential of this modification. Therefore, in this review, we offer a systematic overview of lactate homeostasis in physiological and pathological processes as well as discuss the influence of lactylation in cancer progression and drug resistance and underlying molecular mechanisms, providing a theoretical basis for further research.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101248"},"PeriodicalIF":15.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143874194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-17DOI: 10.1016/j.drup.2025.101246
Jiawen Xu , Bo Wang , Qiaoyu Liu , Sheng Guo , Chen Chen , Jun Wu , Xiaoya Zhao , Mengmeng Li , Zhuang Ma , Shimeng Zhou , Yun Qian , Yijin Huang , Zhangding Wang , Chuanjun Shu , Qingxiang Xu , Jingjing Ben , Qiang Wang , Shouyu Wang
RNA-binding proteins (RBPs) are critical regulators in tumorigenesis and therapy resistance by modulating RNA metabolism. However, the role of RBPs in hepatocarcinogenesis and progression remains elusive. Here, RBPs screening and integrating analyses identify major vault protein (MVP) as an oncogenic RBP in the occurrence of hepatocellular carcinoma (HCC) and sorafenib resistance via suppressing ferroptosis. Mechanistically, reactive oxygen species (ROS) induces STAT3-mediated MVP transcription activation and high expression in HCC cells. Subsequently, phosphoglycerate mutase family member 5 (PGAM5) directly dephosphorylates MVP at S873, facilitating its binding to the mRNA of iron-sequestering cytokine LCN2 and maintains its stability, thereby attenuating ferroptosis by reducing lipid peroxidation and intracellular Fe2+ content following sorafenib treatment. Notably, tenapanor, a potent pharmacological inhibitor of MVP, effectively disrupts the interaction between MVP and LCN2 mRNA and enhances ferroptosis and sorafenib sensitivity. Collectively, these findings underscore the central role of MVP in hepatocarcinogenesis and offer promising avenues to improve HCC treatment.
{"title":"MVP-LCN2 axis triggers evasion of ferroptosis to drive hepatocarcinogenesis and sorafenib resistance","authors":"Jiawen Xu , Bo Wang , Qiaoyu Liu , Sheng Guo , Chen Chen , Jun Wu , Xiaoya Zhao , Mengmeng Li , Zhuang Ma , Shimeng Zhou , Yun Qian , Yijin Huang , Zhangding Wang , Chuanjun Shu , Qingxiang Xu , Jingjing Ben , Qiang Wang , Shouyu Wang","doi":"10.1016/j.drup.2025.101246","DOIUrl":"10.1016/j.drup.2025.101246","url":null,"abstract":"<div><div>RNA-binding proteins (RBPs) are critical regulators in tumorigenesis and therapy resistance by modulating RNA metabolism. However, the role of RBPs in hepatocarcinogenesis and progression remains elusive. Here, RBPs screening and integrating analyses identify major vault protein (MVP) as an oncogenic RBP in the occurrence of hepatocellular carcinoma (HCC) and sorafenib resistance via suppressing ferroptosis. Mechanistically, reactive oxygen species (ROS) induces STAT3-mediated MVP transcription activation and high expression in HCC cells. Subsequently, phosphoglycerate mutase family member 5 (PGAM5) directly dephosphorylates MVP at S873, facilitating its binding to the mRNA of iron-sequestering cytokine LCN2 and maintains its stability, thereby attenuating ferroptosis by reducing lipid peroxidation and intracellular Fe<sup>2+</sup> content following sorafenib treatment. Notably, tenapanor, a potent pharmacological inhibitor of MVP, effectively disrupts the interaction between MVP and LCN2 mRNA and enhances ferroptosis and sorafenib sensitivity. Collectively, these findings underscore the central role of MVP in hepatocarcinogenesis and offer promising avenues to improve HCC treatment.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101246"},"PeriodicalIF":15.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-08DOI: 10.1016/j.drup.2025.101243
Meng Wang , Longyang Jin , Ruobing Wang , Qi Wang , Shuyi Wang , Xingyu Wu , Chaoqun Yao , Jukka Corander , Hui Wang
Aims
Hypervirulent and carbapenem-resistant pathogens posed a significant and growing threat to global public health. This study focused on the rapid spread of a hypervirulent carbapenem-resistant E. coli (hv-CREC) subclone and its genomic resembles with hypervirulent carbapenem-resistant K. pneumoniae (hv-CRKP), driven by recombination impacting both chromosomal and plasmid gene content.
Methods
A multicenter molecular epidemiological study was conducted on 653 CREC clinical isolates collected across China (2013–2022), integrated with public genomic data. Pangenome-wide and phylogeographical analyses were performed to uncover recombination events, define the epidemic clone, and trace its evolutionary history. Growth advantage and virulence were evaluated through competition assays and Galleria mellonella infection models.
Results
Sequence types (ST) 167, ST410, ST617, and ST361 collectively accounted for 53.8 % (351/653) of the CREC isolates, with ST167 showing a sharp increase in prevalence after 2017. Among these, subclone named KpnK48 emerged as the primary driver of the increase in ST167 CREC prevalence. Traced to a European origin, KpnK48 rapidly expanded globally, particularly in China. The remarkable success of KpnK48 could plausibly be attributed to enhanced survival and virulence, driven by the acquisition of a ∼492 kb recombinant genomic region which mirrored the genomic architecture underlying the hv-CRKP ST11-K64 clone, reflecting a Klebsiella-like evolutionary path. Additionally, plasmid shift in KpnK48 clone from the prevalent NDM-IncX3 plasmid to Klebsiella-common NDM-IncF plasmid expanded its resistance spectrum and virulence gene repertoire, likely further amplifying its pathogenicity and success.
Conclusions
The KpnK48 subclone combined the features of hypervirulence and carbapenem resistance, bridging genomic traits of E. coli and K. pneumoniae, signifying a broader evolutionary trend with profound global health implications.
{"title":"KpnK48 clone driving hypervirulent carbapenem-resistant Escherichia coli epidemics: Insights into its evolutionary trajectory similar to Klebsiella pneumoniae","authors":"Meng Wang , Longyang Jin , Ruobing Wang , Qi Wang , Shuyi Wang , Xingyu Wu , Chaoqun Yao , Jukka Corander , Hui Wang","doi":"10.1016/j.drup.2025.101243","DOIUrl":"10.1016/j.drup.2025.101243","url":null,"abstract":"<div><h3>Aims</h3><div>Hypervirulent and carbapenem-resistant pathogens posed a significant and growing threat to global public health. This study focused on the rapid spread of a hypervirulent carbapenem-resistant <em>E. coli</em> (hv-CREC) subclone and its genomic resembles with hypervirulent carbapenem-resistant <em>K. pneumoniae</em> (hv-CRKP), driven by recombination impacting both chromosomal and plasmid gene content.</div></div><div><h3>Methods</h3><div>A multicenter molecular epidemiological study was conducted on 653 CREC clinical isolates collected across China (2013–2022), integrated with public genomic data. Pangenome-wide and phylogeographical analyses were performed to uncover recombination events, define the epidemic clone, and trace its evolutionary history. Growth advantage and virulence were evaluated through competition assays and <em>Galleria mellonella</em> infection models.</div></div><div><h3>Results</h3><div>Sequence types (ST) 167, ST410, ST617, and ST361 collectively accounted for 53.8 % (351/653) of the CREC isolates, with ST167 showing a sharp increase in prevalence after 2017. Among these, subclone named <em>Kpn</em>K48 emerged as the primary driver of the increase in ST167 CREC prevalence. Traced to a European origin, <em>Kpn</em>K48 rapidly expanded globally, particularly in China. The remarkable success of <em>Kpn</em>K48 could plausibly be attributed to enhanced survival and virulence, driven by the acquisition of a ∼492 kb recombinant genomic region which mirrored the genomic architecture underlying the hv-CRKP ST11-K64 clone, reflecting a Klebsiella-like evolutionary path. Additionally, plasmid shift in <em>Kpn</em>K48 clone from the prevalent NDM-IncX3 plasmid to Klebsiella-common NDM-IncF plasmid expanded its resistance spectrum and virulence gene repertoire, likely further amplifying its pathogenicity and success.</div></div><div><h3>Conclusions</h3><div>The <em>Kpn</em>K48 subclone combined the features of hypervirulence and carbapenem resistance, bridging genomic traits of <em>E. coli</em> and <em>K. pneumoniae</em>, signifying a broader evolutionary trend with profound global health implications.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101243"},"PeriodicalIF":15.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143828746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-28DOI: 10.1016/j.drup.2025.101242
Elahe Rahimian , Masoud Koochak , Sofia Traikov , Michael Schroeder , Silke Brilloff , Silvia Schäfer , Vida Kufrin , Sandra Küchler , Alexander Krüger , Peter Mirtschink , Gustavo Baretton , Evelin Schröck , Denis M. Schewe , Claudia R. Ball , Martin Bornhäuser , Hanno Glimm , Marius Bill , Alexander A. Wurm
Relapse in acute myeloid leukemia (AML) is driven by resistant subclones that survive chemotherapy. It is assumed that these resilient leukemic cells can modify their proliferative behavior by entering a quiescent-like state, similar to healthy hematopoietic stem cells (HSCs). These dormant cells can evade the effects of cytostatic drugs that primarily target actively dividing cells. Although quiescence has been extensively studied in healthy hematopoiesis and various solid cancers, its role in AML has remained unexplored.
In this study, we applied an HSC-derived quiescence-associated gene signature to an AML patient cohort and found it to be strongly correlated with poor prognosis and active TGF-β signaling. In vitro treatment with TGF-β1 induces a quiescence-like phenotype, resulting in a G0 shift and reduced sensitivity to cytarabine. To find potential therapeutic targets that prevent AML-associated quiescence and improve response to cytarabine, we conducted a comprehensive CRISPR interference (CRISPRi) screen combined with TGF-β1 stimulation. This approach identified TGFBR1 inhibitors, like vactosertib, as effective agents for preventing the G0 shift in AML cell models. However, pretreatment with vactosertib unexpectedly induced complete resistance to cytarabine. To elucidate the underlying mechanism, we performed a multi-faceted approach combining a second CRISPRi screen, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and in silico analysis. Our findings revealed that TGFBR1 inhibitors unintentionally target the nucleoside transporter SLC29A1 (ENT1), leading to reduced intracellular cytarabine levels. Importantly, we found that this drug interaction is not unique to TGFBR1 inhibitors, but extends to other clinically significant kinase inhibitors, such as the FLT3 inhibitor midostaurin. These findings may have important implications for optimizing combination therapies in AML treatment.
{"title":"A quiescence-like/TGF-β1-specific CRISPRi screen reveals drug uptake transporters as secondary targets of kinase inhibitors in AML","authors":"Elahe Rahimian , Masoud Koochak , Sofia Traikov , Michael Schroeder , Silke Brilloff , Silvia Schäfer , Vida Kufrin , Sandra Küchler , Alexander Krüger , Peter Mirtschink , Gustavo Baretton , Evelin Schröck , Denis M. Schewe , Claudia R. Ball , Martin Bornhäuser , Hanno Glimm , Marius Bill , Alexander A. Wurm","doi":"10.1016/j.drup.2025.101242","DOIUrl":"10.1016/j.drup.2025.101242","url":null,"abstract":"<div><div>Relapse in acute myeloid leukemia (AML) is driven by resistant subclones that survive chemotherapy. It is assumed that these resilient leukemic cells can modify their proliferative behavior by entering a quiescent-like state, similar to healthy hematopoietic stem cells (HSCs). These dormant cells can evade the effects of cytostatic drugs that primarily target actively dividing cells. Although quiescence has been extensively studied in healthy hematopoiesis and various solid cancers, its role in AML has remained unexplored.</div><div>In this study, we applied an HSC-derived quiescence-associated gene signature to an AML patient cohort and found it to be strongly correlated with poor prognosis and active TGF-β signaling. <em>In vitro</em> treatment with TGF-β1 induces a quiescence-like phenotype, resulting in a G0 shift and reduced sensitivity to cytarabine. To find potential therapeutic targets that prevent AML-associated quiescence and improve response to cytarabine, we conducted a comprehensive CRISPR interference (CRISPRi) screen combined with TGF-β1 stimulation. This approach identified TGFBR1 inhibitors, like vactosertib, as effective agents for preventing the G0 shift in AML cell models. However, pretreatment with vactosertib unexpectedly induced complete resistance to cytarabine. To elucidate the underlying mechanism, we performed a multi-faceted approach combining a second CRISPRi screen, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and <em>in silico</em> analysis. Our findings revealed that TGFBR1 inhibitors unintentionally target the nucleoside transporter <em>SLC29A1</em> (ENT1), leading to reduced intracellular cytarabine levels. Importantly, we found that this drug interaction is not unique to TGFBR1 inhibitors, but extends to other clinically significant kinase inhibitors, such as the FLT3 inhibitor midostaurin. These findings may have important implications for optimizing combination therapies in AML treatment.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101242"},"PeriodicalIF":15.8,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143759039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1016/j.drup.2025.101240
Hongyi Lin , Shuncang Zhu , Yinhao Chen , Jinpeng Lu , Chengke Xie , Chengyu Liao , Xiaoxiao Huang , Ge Li , Yongding Wu , Zhiyuan Li , Jianfei Hu , Xinquan Lin , Yifeng Tian , Qiaowei Li , Zuwei Wang , Shi Chen
Aims
Current therapeutic strategies for pancreatic ductal adenocarcinoma (PDAC) have limited efficacy in increasing patient survival rates, largely due to ferroptosis resistance and immunosuppression. The aim of this study is to identify molecular mechanisms associated with ferroptosis resistance and immunosuppression in PDAC tumour cells.
Methods
Circular RNA sequencing (circRNA-seq) was performed on clinical samples to identify potential circRNAs that mediate ferroptosis resistance. C11-BODIPY staining, FerroOrange staining, the glutathione ratio, malondialdehyde quantification, and transmission electron microscopy were employed to assess ferroptosis. RNA pulldown, mass spectrometry, RNA immunoprecipitation, and coimmunoprecipitation assays were conducted to investigate the molecular mechanisms involved. A HuNSG mouse xenograft tumour model was utilized to validate therapeutic agents.
Results
A circRNA derived from TRIP12 (cTRIP12) was identified in PDAC samples resistant to ferroptosis. cTRIP12 knockdown increased the sensitivity of PDAC cells to ferroptosis and immunotherapy. Subsequent mechanistic studies revealed that cTRIP12 specifically binds to the O-linked N-acetylglucosamine transferase (OGT) protein and increases intracellular O-GlcNAcylation levels, leading to increased protein levels of ferritin heavy chain (FTH) and PD-L1 in tumour cells. Notably, high cTRIP12 expression suppressed ferroptosis sensitivity and increased immune resistance in PDAC cells by functioning as a protein scaffold through its interaction with OGT and protein kinase R-like endoplasmic reticulum kinase (PERK). cTRIP12 inhibition induced ferroptosis in PDAC cells by reducing FTH and PD-L1 expression and synergistically increased the immunotherapy efficacy. In vivo animal experiments confirmed that the triple therapy consisting of GSK2656157, erastin, and anti-CTLA-4 effectively suppressed the progression of PDAC in tumours with high cTRIP12 expression.
Conclusion
We elucidated the molecular mechanisms underlying the simultaneous occurrence of ferroptosis resistance and immune suppression in PDAC patients. Our study provides a novel therapeutic strategy that could promote ferroptosis in tumour cells and increase immunotherapy efficacy.
{"title":"Targeting cTRIP12 counteracts ferroptosis resistance and augments sensitivity to immunotherapy in pancreatic cancer","authors":"Hongyi Lin , Shuncang Zhu , Yinhao Chen , Jinpeng Lu , Chengke Xie , Chengyu Liao , Xiaoxiao Huang , Ge Li , Yongding Wu , Zhiyuan Li , Jianfei Hu , Xinquan Lin , Yifeng Tian , Qiaowei Li , Zuwei Wang , Shi Chen","doi":"10.1016/j.drup.2025.101240","DOIUrl":"10.1016/j.drup.2025.101240","url":null,"abstract":"<div><h3>Aims</h3><div>Current therapeutic strategies for pancreatic ductal adenocarcinoma (PDAC) have limited efficacy in increasing patient survival rates, largely due to ferroptosis resistance and immunosuppression. The aim of this study is to identify molecular mechanisms associated with ferroptosis resistance and immunosuppression in PDAC tumour cells.</div></div><div><h3>Methods</h3><div>Circular RNA sequencing (circRNA-seq) was performed on clinical samples to identify potential circRNAs that mediate ferroptosis resistance. C11-BODIPY staining, FerroOrange staining, the glutathione ratio, malondialdehyde quantification, and transmission electron microscopy were employed to assess ferroptosis. RNA pulldown, mass spectrometry, RNA immunoprecipitation, and coimmunoprecipitation assays were conducted to investigate the molecular mechanisms involved. A HuNSG mouse xenograft tumour model was utilized to validate therapeutic agents.</div></div><div><h3>Results</h3><div>A circRNA derived from TRIP12 (cTRIP12) was identified in PDAC samples resistant to ferroptosis. cTRIP12 knockdown increased the sensitivity of PDAC cells to ferroptosis and immunotherapy. Subsequent mechanistic studies revealed that cTRIP12 specifically binds to the O-linked N-acetylglucosamine transferase (OGT) protein and increases intracellular O-GlcNAcylation levels, leading to increased protein levels of ferritin heavy chain (FTH) and PD-L1 in tumour cells. Notably, high cTRIP12 expression suppressed ferroptosis sensitivity and increased immune resistance in PDAC cells by functioning as a protein scaffold through its interaction with OGT and protein kinase R-like endoplasmic reticulum kinase (PERK). cTRIP12 inhibition induced ferroptosis in PDAC cells by reducing FTH and PD-L1 expression and synergistically increased the immunotherapy efficacy. In vivo animal experiments confirmed that the triple therapy consisting of GSK2656157, erastin, and anti-CTLA-4 effectively suppressed the progression of PDAC in tumours with high cTRIP12 expression.</div></div><div><h3>Conclusion</h3><div>We elucidated the molecular mechanisms underlying the simultaneous occurrence of ferroptosis resistance and immune suppression in PDAC patients. Our study provides a novel therapeutic strategy that could promote ferroptosis in tumour cells and increase immunotherapy efficacy.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101240"},"PeriodicalIF":15.8,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1016/j.drup.2025.101241
Zhu Xu , Mingming Zhu , Longpo Geng , Jun Zhang , Jing Xia , Qiang Wang , Hongda An , Anliang Xia , Yuanyuan Yu , Shihan Liu , Junjie Tong , Wei-Guo Zhu , Yiyang Jiang , Beicheng Sun
Aims
RNA metabolism has been extensively studied in DNA double-strand break (DSB) repair. The RNA acetyltransferase N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification in DSB repair remains largely elusive. In this study, we aim to decipher the role for ac4C modification by NAT10 in DSB repair in hepatocellular carcinoma (HCC).
Methods
Laser micro-irradiation and chromatin immunoprecipitation (ChIP) were used to assess the accumulation of ac4C modification and NAT10 at DSB sites. Cryo-electron microscopy (cryo-EM) was used to determine the structures of NAT10 in complex with its inhibitor, remodelin. Hepatocyte-specific deletion of NAT10 mouse models were adopted to detect the effects of NAT10 on HCC progression. Subcutaneous xenograft, human HCC organoid and patient-derived xenograft (PDX) model were exploited to determine the therapy efficiency of the combination of a poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi) and remodelin.
Results
NAT10 promptly accumulates at DSB sites, where it executes ac4C modification on RNAs at DNA:RNA hybrids dependent on PARP1. This in turn enhances the stability of DNA:RNA hybrids and promotes homologous recombination (HR) repair. The ablation of NAT10 curtails HCC progression. Furthermore, the cryo-EM yields a remarkable 2.9 angstroms resolution structure of NAT10-remodelin, showcasing a C2 symmetric architecture. Remodelin treatment significantly enhanced the sensitivity of HCC cells to a PARPi and targeting NAT10 also restored sensitivity to a PARPi in ovarian and breast cancer cells that had developed resistance.
Conclusion
Our study elucidated the mechanism of NAT10-mediated ac4C modification in DSB repair, revealing that targeting NAT10 confers synthetic lethality to PARP inhibition in HCC. Our findings suggest that co-inhibition of NAT10 and PARP1 is an effective novel therapeutic strategy for patients with HCC and have the potential to overcome PARPi resistance.
{"title":"Targeting NAT10 attenuates homologous recombination via destabilizing DNA:RNA hybrids and overcomes PARP inhibitor resistance in cancers","authors":"Zhu Xu , Mingming Zhu , Longpo Geng , Jun Zhang , Jing Xia , Qiang Wang , Hongda An , Anliang Xia , Yuanyuan Yu , Shihan Liu , Junjie Tong , Wei-Guo Zhu , Yiyang Jiang , Beicheng Sun","doi":"10.1016/j.drup.2025.101241","DOIUrl":"10.1016/j.drup.2025.101241","url":null,"abstract":"<div><h3>Aims</h3><div>RNA metabolism has been extensively studied in DNA double-strand break (DSB) repair. The RNA acetyltransferase N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification in DSB repair remains largely elusive. In this study, we aim to decipher the role for ac4C modification by NAT10 in DSB repair in hepatocellular carcinoma (HCC).</div></div><div><h3>Methods</h3><div>Laser micro-irradiation and chromatin immunoprecipitation (ChIP) were used to assess the accumulation of ac4C modification and NAT10 at DSB sites. Cryo-electron microscopy (cryo-EM) was used to determine the structures of NAT10 in complex with its inhibitor, remodelin. Hepatocyte-specific deletion of NAT10 mouse models were adopted to detect the effects of NAT10 on HCC progression. Subcutaneous xenograft, human HCC organoid and patient-derived xenograft (PDX) model were exploited to determine the therapy efficiency of the combination of a poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi) and remodelin.</div></div><div><h3>Results</h3><div>NAT10 promptly accumulates at DSB sites, where it executes ac4C modification on RNAs at DNA:RNA hybrids dependent on PARP1. This in turn enhances the stability of DNA:RNA hybrids and promotes homologous recombination (HR) repair. The ablation of NAT10 curtails HCC progression. Furthermore, the cryo-EM yields a remarkable 2.9 angstroms resolution structure of NAT10-remodelin, showcasing a C2 symmetric architecture. Remodelin treatment significantly enhanced the sensitivity of HCC cells to a PARPi and targeting NAT10 also restored sensitivity to a PARPi in ovarian and breast cancer cells that had developed resistance.</div></div><div><h3>Conclusion</h3><div>Our study elucidated the mechanism of NAT10-mediated ac4C modification in DSB repair, revealing that targeting NAT10 confers synthetic lethality to PARP inhibition in HCC. Our findings suggest that co-inhibition of NAT10 and PARP1 is an effective novel therapeutic strategy for patients with HCC and have the potential to overcome PARPi resistance.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101241"},"PeriodicalIF":15.8,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-15DOI: 10.1016/j.drup.2025.101239
Bram Van den Bergh , Philip Ruelens , Lieze Agten , Laurence Van Moll , Nele Geerts , Laure Verstraete , Sang Nguyen , Linda De Vooght , Natalie Verstraeten , Paul Cos , Jan Michiels
Despite global efforts, antimicrobial resistance persists. Mechanisms like heterotolerance further undermine antibiotic effectiveness. Testing > 1000 clinical strains revealed widespread heterotolerance largely missed by conventional MIC-based diagnostics. Since AMR alone does not predict treatment success, new tests and strategies incorporating tolerance data are urgently needed to significantly improve patient outcomes.
尽管全球都在努力,但抗生素耐药性依然存在。异耐药性等机制进一步削弱了抗生素的有效性。对超过 1000 株临床菌株进行测试后发现,基于 MIC 的传统诊断方法在很大程度上忽略了广泛的异耐药性。由于单凭 AMR 无法预测治疗的成功与否,因此迫切需要结合耐药性数据的新检测方法和策略,以显著改善患者的治疗效果。
{"title":"Widespread antibiotic heterotolerance in bacteria remains undetected by resistance assays","authors":"Bram Van den Bergh , Philip Ruelens , Lieze Agten , Laurence Van Moll , Nele Geerts , Laure Verstraete , Sang Nguyen , Linda De Vooght , Natalie Verstraeten , Paul Cos , Jan Michiels","doi":"10.1016/j.drup.2025.101239","DOIUrl":"10.1016/j.drup.2025.101239","url":null,"abstract":"<div><div>Despite global efforts, antimicrobial resistance persists. Mechanisms like heterotolerance further undermine antibiotic effectiveness. Testing > 1000 clinical strains revealed widespread heterotolerance largely missed by conventional MIC-based diagnostics. Since AMR alone does not predict treatment success, new tests and strategies incorporating tolerance data are urgently needed to significantly improve patient outcomes.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101239"},"PeriodicalIF":15.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-12DOI: 10.1016/j.drup.2025.101237
Manish Thiruvalluvan , Sandrine Billet , Zhenqiu Liu , Joseph Lownik , Barliz Waissengrin , Hyoyoung Kim , Anton L. Villamejor , Larry Milshteyn , Xiamo Li , Matthew Gayhart , Manuel Araña , Kamya Sankar , Edwin M. Posadas , Jean Lopategui , Sungyong You , Karen L. Reckamp , Neil A. Bhowmick
Aim
To investigate the role of CD105 in mediating drug resistance to EGFR-targeted therapy in non-small cell lung cancer (NSCLC).
Methods
Imaging mass cytometry was conducted on 66 NSCLC tumors, 44 of which had EGFR mutations. We correlated clinical variables, including overall survival, with CD105 (endoglin) expression, a co-receptor for bone morphogenetic protein (BMP) signaling. Two osimertinib-resistant EGFR-mutant cell lines were developed to study the effects of EGFR and CD105 disruption. Single cell RNA sequencing of the isogenic parental and osimertinib resistant lines was performed. Additionally, ATAC sequencing and Single Cell ENergetIc metabolism by profiling Translation inHibition analysis (SCENITH) was used to assess promoter chromatin status and glycolytic state.
Results
We found a negative correlation between CD105 expression and overall survival in patients. Treatment with osimertinib or EGFR knockdown significantly elevated CD105 expression in EGFR-mutant cell lines. Single-cell RNA sequencing identified a subset of cells with heightened endothelial characteristics and altered pyrimidine metabolism, associated with osimertinib resistance. These cells exhibited a slow-cycling behavior, characterized by elevated chromatin condensation and reduced glycolysis. Combining osimertinib with carotuximab, a CD105 neutralizing antibody, significantly reduced the slow-cycling transcriptomic signature, increased chromatin accessibility, and restored glycolysis compared to osimertinib treatment alone. Mass spectrometry confirmed that carotuximab re-engaged EGFR signaling by coupling it with CD105. Consequently, carotuximab re-sensitized resistant tumors to osimertinib by increasing their mitotic index and ERK signaling in mouse models.
Conclusion
Carotuximab effectively reduced the slow-cycling cell population and restored osimertinib sensitivity, offering a promising strategy for managing refractory NSCLC.
{"title":"CD105 blockade restores osimertinib sensitivity in drug-resistant EGFR-mutant non-small cell lung cancer","authors":"Manish Thiruvalluvan , Sandrine Billet , Zhenqiu Liu , Joseph Lownik , Barliz Waissengrin , Hyoyoung Kim , Anton L. Villamejor , Larry Milshteyn , Xiamo Li , Matthew Gayhart , Manuel Araña , Kamya Sankar , Edwin M. Posadas , Jean Lopategui , Sungyong You , Karen L. Reckamp , Neil A. Bhowmick","doi":"10.1016/j.drup.2025.101237","DOIUrl":"10.1016/j.drup.2025.101237","url":null,"abstract":"<div><h3>Aim</h3><div>To investigate the role of CD105 in mediating drug resistance to EGFR-targeted therapy in non-small cell lung cancer (NSCLC).</div></div><div><h3>Methods</h3><div>Imaging mass cytometry was conducted on 66 NSCLC tumors, 44 of which had EGFR mutations. We correlated clinical variables, including overall survival, with CD105 (endoglin) expression, a co-receptor for bone morphogenetic protein (BMP) signaling. Two osimertinib-resistant EGFR-mutant cell lines were developed to study the effects of EGFR and CD105 disruption. Single cell RNA sequencing of the isogenic parental and osimertinib resistant lines was performed. Additionally, ATAC sequencing and Single Cell ENergetIc metabolism by profiling Translation inHibition analysis (SCENITH) was used to assess promoter chromatin status and glycolytic state.</div></div><div><h3>Results</h3><div>We found a negative correlation between CD105 expression and overall survival in patients. Treatment with osimertinib or EGFR knockdown significantly elevated CD105 expression in EGFR-mutant cell lines. Single-cell RNA sequencing identified a subset of cells with heightened endothelial characteristics and altered pyrimidine metabolism, associated with osimertinib resistance. These cells exhibited a slow-cycling behavior, characterized by elevated chromatin condensation and reduced glycolysis. Combining osimertinib with carotuximab, a CD105 neutralizing antibody, significantly reduced the slow-cycling transcriptomic signature, increased chromatin accessibility, and restored glycolysis compared to osimertinib treatment alone. Mass spectrometry confirmed that carotuximab re-engaged EGFR signaling by coupling it with CD105. Consequently, carotuximab re-sensitized resistant tumors to osimertinib by increasing their mitotic index and ERK signaling in mouse models.</div></div><div><h3>Conclusion</h3><div>Carotuximab effectively reduced the slow-cycling cell population and restored osimertinib sensitivity, offering a promising strategy for managing refractory NSCLC.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101237"},"PeriodicalIF":15.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-12DOI: 10.1016/j.drup.2025.101238
Bingli Wu , Yinwei Cheng , Liyan Li , Zepeng Du , Qianlou Liu , Xinyue Tan , Xin Li , Guozhi Zhao , Enmin Li
Chemotherapeutic drug resistance remains a major barrier to effective cancer treatment. Drug resistance could be driven in part by adaptive redox remodeling of cancer cells. Paradoxically, drug-resistant malignancies exhibit elevated reactive oxygen species (ROS), as well as amplified antioxidant defenses, which enable cancer cell survival under therapeutic stress. Central to this adaptation is glutathione (GSH), the predominant cellular antioxidant, whose synthesis relies on sulfur-containing amino acids (SAAs) – methionine and cysteine. This review delineates the metabolic interplay between methionine and cysteine in the transsulfuration pathway, highlighting their roles as precursors in GSH biosynthesis. We systematically summarize the key enzymes that drive GSH production and their contributions to resistance against platinum-based drugs and other chemotherapeutics. In addition to GSH synthesis, we summarize the roles of GSH antioxidant systems, including glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), and thioredoxins (TRXs), which are critical in chemotherapeutic drug resistance through ROS scavenging. Recent advances reveal that targeting these enzymes, by pharmacologically inhibiting transsulfuration enzymes or disrupting GSH-dependent antioxidant cascades, can sensitize resistant cancer cells to ROS-mediated therapies. These findings not only clarify the mechanistic links between SAA metabolism and redox adaptation but also provide practical approaches to overcome chemotherapeutic drug resistance. By analyzing metabolic and redox vulnerabilities, this review highlights the therapeutic potential to restore chemosensitivity, offering new options in precision oncology medicine.
{"title":"Role of the sulfur-containing amino acid-ROS axis in cancer chemotherapeutic drug resistance","authors":"Bingli Wu , Yinwei Cheng , Liyan Li , Zepeng Du , Qianlou Liu , Xinyue Tan , Xin Li , Guozhi Zhao , Enmin Li","doi":"10.1016/j.drup.2025.101238","DOIUrl":"10.1016/j.drup.2025.101238","url":null,"abstract":"<div><div>Chemotherapeutic drug resistance remains a major barrier to effective cancer treatment. Drug resistance could be driven in part by adaptive redox remodeling of cancer cells. Paradoxically, drug-resistant malignancies exhibit elevated reactive oxygen species (ROS), as well as amplified antioxidant defenses, which enable cancer cell survival under therapeutic stress. Central to this adaptation is glutathione (GSH), the predominant cellular antioxidant, whose synthesis relies on sulfur-containing amino acids (SAAs) – methionine and cysteine. This review delineates the metabolic interplay between methionine and cysteine in the transsulfuration pathway, highlighting their roles as precursors in GSH biosynthesis. We systematically summarize the key enzymes that drive GSH production and their contributions to resistance against platinum-based drugs and other chemotherapeutics. In addition to GSH synthesis, we summarize the roles of GSH antioxidant systems, including glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), and thioredoxins (TRXs), which are critical in chemotherapeutic drug resistance through ROS scavenging. Recent advances reveal that targeting these enzymes, by pharmacologically inhibiting transsulfuration enzymes or disrupting GSH-dependent antioxidant cascades, can sensitize resistant cancer cells to ROS-mediated therapies. These findings not only clarify the mechanistic links between SAA metabolism and redox adaptation but also provide practical approaches to overcome chemotherapeutic drug resistance. By analyzing metabolic and redox vulnerabilities, this review highlights the therapeutic potential to restore chemosensitivity, offering new options in precision oncology medicine.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101238"},"PeriodicalIF":15.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-08DOI: 10.1016/j.drup.2025.101229
Jin-Rui Wei , Meng-Yi Lu , Tian-Hua Wei , Joshua S. Fleishman , Hui Yu , Xiao-Li Chen , Xiang-Tu Kong , Shan-Liang Sun , Nian-Guang Li , Ye Yang , Hai-Wen Ni
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
{"title":"Overcoming cancer therapy resistance: From drug innovation to therapeutics","authors":"Jin-Rui Wei , Meng-Yi Lu , Tian-Hua Wei , Joshua S. Fleishman , Hui Yu , Xiao-Li Chen , Xiang-Tu Kong , Shan-Liang Sun , Nian-Guang Li , Ye Yang , Hai-Wen Ni","doi":"10.1016/j.drup.2025.101229","DOIUrl":"10.1016/j.drup.2025.101229","url":null,"abstract":"<div><div>One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101229"},"PeriodicalIF":15.8,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}