Aging and senescence: Key players in brain tumor progression and drug resistance

IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Resistance Updates Pub Date : 2025-03-08 DOI:10.1016/j.drup.2025.101228
Chao Zhang , Neha , Jiaqi Zhang , Prashant , Xiaodie Li , Sarad Kumar Mishra , Joshua Fleishman , Suhel Parvez , Saurabh Kumar Jha , Min Huang
{"title":"Aging and senescence: Key players in brain tumor progression and drug resistance","authors":"Chao Zhang ,&nbsp;Neha ,&nbsp;Jiaqi Zhang ,&nbsp;Prashant ,&nbsp;Xiaodie Li ,&nbsp;Sarad Kumar Mishra ,&nbsp;Joshua Fleishman ,&nbsp;Suhel Parvez ,&nbsp;Saurabh Kumar Jha ,&nbsp;Min Huang","doi":"10.1016/j.drup.2025.101228","DOIUrl":null,"url":null,"abstract":"<div><div>Aging plays a critical role in the development, progression, and therapeutic challenges associated with brain tumors, particularly glioblastomas (GBM). As the population ages, the incidence of brain tumors, including GBM, increases, with aging emerging as a significant prognostic factor influencing survival outcomes. This review examines the molecular mechanisms linking aging and brain tumor progression, with a specific focus on glioblastomas. We explore how age-related genetic mutations, alterations in cellular pathways, and changes in the tumor microenvironment (TME) contribute to tumorigenesis and treatment resistance. Furthermore, we highlight the impact of key signaling pathways, such as the PI3K/AKT/mTOR, p53, and EGFR/PTEN, which are frequently dysregulated in both aging and brain tumors. Despite the growing recognition of aging as a critical factor in brain tumor biology, therapeutic strategies for elderly patients remain poorly defined, often due to underrepresentation in clinical trials and the complex interplay of comorbidities and treatment side effects. The review also discusses emerging therapeutic approaches, including targeted therapies and immunotherapies, which offer promise for improving treatment outcomes by addressing age-related molecular changes. Finally, we emphasize the importance of personalized treatment strategies and the need for further research to better understand the biological mechanisms underlying the aging-brain tumor relationship, ultimately aiming to enhance clinical management and patient quality of life.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101228"},"PeriodicalIF":15.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764625000287","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging plays a critical role in the development, progression, and therapeutic challenges associated with brain tumors, particularly glioblastomas (GBM). As the population ages, the incidence of brain tumors, including GBM, increases, with aging emerging as a significant prognostic factor influencing survival outcomes. This review examines the molecular mechanisms linking aging and brain tumor progression, with a specific focus on glioblastomas. We explore how age-related genetic mutations, alterations in cellular pathways, and changes in the tumor microenvironment (TME) contribute to tumorigenesis and treatment resistance. Furthermore, we highlight the impact of key signaling pathways, such as the PI3K/AKT/mTOR, p53, and EGFR/PTEN, which are frequently dysregulated in both aging and brain tumors. Despite the growing recognition of aging as a critical factor in brain tumor biology, therapeutic strategies for elderly patients remain poorly defined, often due to underrepresentation in clinical trials and the complex interplay of comorbidities and treatment side effects. The review also discusses emerging therapeutic approaches, including targeted therapies and immunotherapies, which offer promise for improving treatment outcomes by addressing age-related molecular changes. Finally, we emphasize the importance of personalized treatment strategies and the need for further research to better understand the biological mechanisms underlying the aging-brain tumor relationship, ultimately aiming to enhance clinical management and patient quality of life.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Resistance Updates
Drug Resistance Updates 医学-药学
CiteScore
26.20
自引率
11.90%
发文量
32
审稿时长
29 days
期刊介绍: Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation. Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective. *Expert reviews in clinical and basic drug resistance research in oncology and infectious disease *Describes emerging technologies and therapies, particularly those that overcome drug resistance *Emphasises common themes in microbial and cancer research
期刊最新文献
Aging and senescence: Key players in brain tumor progression and drug resistance The combination of flaxseed lignans and PD-1/ PD-L1 inhibitor inhibits breast cancer growth via modulating gut microbiome and host immunity DTX2 attenuates Lenvatinib-induced ferroptosis by suppressing docosahexaenoic acid biosynthesis through HSD17B4-dependent peroxisomal β-oxidation in hepatocellular carcinoma Centromere protein U mediates the ubiquitination and degradation of RPS3 to facilitate temozolomide resistance in glioblastoma Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1