Exploring AI progress in GNSS remote sensing: A deep learning based framework for real-time detection of earthquake and tsunami induced ionospheric perturbations

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Radio Science Pub Date : 2024-09-01 DOI:10.1029/2024RS008016
Michela Ravanelli;Valentino Constantinou;Hamlin Liu;Jacob Bortnik
{"title":"Exploring AI progress in GNSS remote sensing: A deep learning based framework for real-time detection of earthquake and tsunami induced ionospheric perturbations","authors":"Michela Ravanelli;Valentino Constantinou;Hamlin Liu;Jacob Bortnik","doi":"10.1029/2024RS008016","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite System Ionospheric Seismology investigates the ionospheric response to earthquakes and tsunamis. These events are known to generate Traveling Ionospheric Disturbances (TIDs) that can be detected through GNSS-derived Total Electron Content (TEC) observations. Real-time TID identification provides a method for tsunami detection, improving tsunami early warning systems (TEWS) by extending coverage to open-ocean regions where buoy-based warning systems are impractical. Scalable and automated TID detection is, hence, essential for TEWS augmentation. In this work, we present an innovative approach to perform automatic real-time TID monitoring and detection, using deep learning insights. We utilize Gramian Angular Difference Fields (GADFs), a technique that transforms time-series into images, in combination with Convolutional Neural Networks (CNNs), starting from VARION (Variometric Approach for Real-time Ionosphere Observation) real-time TEC estimates. We select four tsunamigenic earthquakes that occurred in the Pacific Ocean: the 2010 Maule earthquake, the 2011 Tohoku earthquake, the 2012 Haida-Gwaii, the 2015 Illapel earthquake. The first three events are used for model training, whereas the out-of-sample validation is performed on the last one. The presented framework, being perfectly suitable for real-time applications, achieves 91.7% of F1 score and 84.6% of recall, highlighting its potential. Our approach to improve false positive detection, based on the likelihood of a TID at each time step, ensures robust and high performance as the system scales up, integrating more data for model training. This research lays the foundation for incorporating deep learning into real-time GNSS-TEC analysis, offering a joint and substantial contribution to TEWS progression.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 9","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705026/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Global Navigation Satellite System Ionospheric Seismology investigates the ionospheric response to earthquakes and tsunamis. These events are known to generate Traveling Ionospheric Disturbances (TIDs) that can be detected through GNSS-derived Total Electron Content (TEC) observations. Real-time TID identification provides a method for tsunami detection, improving tsunami early warning systems (TEWS) by extending coverage to open-ocean regions where buoy-based warning systems are impractical. Scalable and automated TID detection is, hence, essential for TEWS augmentation. In this work, we present an innovative approach to perform automatic real-time TID monitoring and detection, using deep learning insights. We utilize Gramian Angular Difference Fields (GADFs), a technique that transforms time-series into images, in combination with Convolutional Neural Networks (CNNs), starting from VARION (Variometric Approach for Real-time Ionosphere Observation) real-time TEC estimates. We select four tsunamigenic earthquakes that occurred in the Pacific Ocean: the 2010 Maule earthquake, the 2011 Tohoku earthquake, the 2012 Haida-Gwaii, the 2015 Illapel earthquake. The first three events are used for model training, whereas the out-of-sample validation is performed on the last one. The presented framework, being perfectly suitable for real-time applications, achieves 91.7% of F1 score and 84.6% of recall, highlighting its potential. Our approach to improve false positive detection, based on the likelihood of a TID at each time step, ensures robust and high performance as the system scales up, integrating more data for model training. This research lays the foundation for incorporating deep learning into real-time GNSS-TEC analysis, offering a joint and substantial contribution to TEWS progression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索全球导航卫星系统遥感领域的人工智能进展:基于深度学习的地震和海啸电离层扰动实时检测框架
全球导航卫星系统电离层地震学研究电离层对地震和海啸的反应。众所周知,这些事件会产生移动电离层扰动(TID),可通过源自全球导航卫星系统的电子总含量(TEC)观测加以探测。实时 TID 识别为海啸探测提供了一种方法,通过将覆盖范围扩大到浮标预警系统不可行的公海地区,改进了海啸预警系统(TEWS)。因此,可扩展的自动 TID 检测对于增强 TEWS 至关重要。在这项工作中,我们提出了一种创新方法,利用深度学习的洞察力进行自动实时 TID 监测和检测。我们利用将时间序列转换为图像的技术--格兰角差场(GADFs),结合卷积神经网络(CNNs),从电离层实时观测变异方法(VARION)的实时 TEC 估计值出发。我们选择了四次发生在太平洋的海啸地震:2010 年毛勒地震、2011 年东北地震、2012 年海达-瓜伊岛地震和 2015 年伊利亚佩尔地震。前三个事件用于模型训练,而样本外验证则在最后一个事件上进行。所提出的框架完全适用于实时应用,F1 得分达到 91.7%,召回率达到 84.6%,彰显了其潜力。我们根据每个时间步的 TID 可能性改进误报检测的方法,确保了系统在扩展时的稳健性和高性能,并整合了更多数据用于模型训练。这项研究为将深度学习纳入实时 GNSS-TEC 分析奠定了基础,为 TEWS 的发展做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
期刊最新文献
Landmine detection using electromagnetic time reversalbased methods: 1. classical TR, iterative TR, DORT and TR-MUSIC Landmine detection using electromagnetic time reversal-based methods: 2. performance analysis of TR-MUSIC An assessment of HF radio wave propagation in antarctica for a radio link between McMurdo and south pole station Front matters Automatic extraction of VLF constant-frequency electromagnetic wave frequency based on an improved Vgg16-Unet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1