Lactiplantibacillus plantarum 299V-fermented soy whey improved the safety and shelf life of Pacific oysters (Magallana gigas)

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY NPJ Science of Food Pub Date : 2024-10-05 DOI:10.1038/s41538-024-00317-3
Lipin Chen, Qian Hua, Mei Zhen Michelle Ten, Zhaojie Li, Changhu Xue, Dan Li
{"title":"Lactiplantibacillus plantarum 299V-fermented soy whey improved the safety and shelf life of Pacific oysters (Magallana gigas)","authors":"Lipin Chen, Qian Hua, Mei Zhen Michelle Ten, Zhaojie Li, Changhu Xue, Dan Li","doi":"10.1038/s41538-024-00317-3","DOIUrl":null,"url":null,"abstract":"This study developed a postbiotic fermentation solution for fresh oyster preservation with the use of food waste soy whey. Lactiplantibacillus plantarum 299V was able to proliferate in soy whey within 24 h without any supplementation. Pacific oysters (Magallana gigas) were immersed in the postbiotic fermentation solution and stored at 4 °C for 12 days. Pathogenic bacteria Vibrio parahaemolyticus and Salmonella enterica introduced by bioaccumulation were suppressed to levels below the detection limit (<2 log CFU/g) within 4 days. The spoilage-related microbial parameters and chemical parameters were maintained at low levels across the 12 days. Sensory evaluation revealed that the product had a positive effect on most of the participants (>60%). Overall, the postbiotic fermentation solution reported in this study enhanced the shelf life and safety of oysters in a sustainable way and could also be recognized as an innovative probiotic vehicle with potential implications for human health promotion.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-10"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00317-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00317-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a postbiotic fermentation solution for fresh oyster preservation with the use of food waste soy whey. Lactiplantibacillus plantarum 299V was able to proliferate in soy whey within 24 h without any supplementation. Pacific oysters (Magallana gigas) were immersed in the postbiotic fermentation solution and stored at 4 °C for 12 days. Pathogenic bacteria Vibrio parahaemolyticus and Salmonella enterica introduced by bioaccumulation were suppressed to levels below the detection limit (<2 log CFU/g) within 4 days. The spoilage-related microbial parameters and chemical parameters were maintained at low levels across the 12 days. Sensory evaluation revealed that the product had a positive effect on most of the participants (>60%). Overall, the postbiotic fermentation solution reported in this study enhanced the shelf life and safety of oysters in a sustainable way and could also be recognized as an innovative probiotic vehicle with potential implications for human health promotion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物乳杆菌 299V 发酵大豆乳清提高了太平洋牡蛎的安全性和货架期
本研究利用厨余大豆乳清开发了一种用于保鲜牡蛎的后生物发酵解决方案。植物乳杆菌 299V 能够在 24 小时内于大豆乳清中增殖,无需任何补充。将太平洋牡蛎(Magallana gigas)浸入后益生菌发酵液中,并在 4 °C 下储存 12 天。通过生物累积引入的致病菌副溶血性弧菌和肠炎沙门氏菌在 4 天内被抑制到检测限以下(2 log CFU/g)。与腐败有关的微生物参数和化学参数在 12 天内保持在较低水平。感官评估显示,该产品对大多数参与者(60%)产生了积极影响。总之,本研究报告的后益生菌发酵解决方案以一种可持续的方式提高了牡蛎的货架期和安全性,也可被视为一种创新的益生菌载体,对促进人类健康具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Science of Food
NPJ Science of Food FOOD SCIENCE & TECHNOLOGY-
CiteScore
7.50
自引率
1.60%
发文量
53
期刊介绍: npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.
期刊最新文献
Cowpea legumin preservative impacts on beef ribeye and implications on antibiotic resistant food borne pathogens Akkermansia muciniphila ONE effectively ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice Improved nutritional value of surplus bread and perennial ryegrass via solid-state fermentation with Rhizopus oligosporus The mechanical and sensory signature of plant-based and animal meat Ampelopsis grossedentata tea alleviating liver fibrosis in BDL-induced mice via gut microbiota and metabolite modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1