Saeed S. Jahromi, Max Hörmann, Patrick Adelhardt, Sebastian Fey, Hooman Karamnejad, Román Orús, Kai Phillip Schmidt
{"title":"Kitaev honeycomb antiferromagnet in a field: quantum phase diagram for general spin","authors":"Saeed S. Jahromi, Max Hörmann, Patrick Adelhardt, Sebastian Fey, Hooman Karamnejad, Román Orús, Kai Phillip Schmidt","doi":"10.1038/s42005-024-01809-0","DOIUrl":null,"url":null,"abstract":"We use tensor-network methods and high-order linked-cluster expansions to explore the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field for general spin S values. Tensor network calculations for the pure Kitaev model confirm the absence of fluxes and spin-spin correlations beyond nearest neighbors, while revealing discrete orientational symmetry breaking for S ∈ 1, 3/2, 2, consistent with the semiclassical limit. An intermediate region between Kitaev phases and the high-field polarized phase is identified for all considered spin values, showing a sequence of potential phases characterized by distinct local magnetization patterns while the total magnetization increases smoothly as a function of the field. Linked-cluster expansions for the high-field zero-momentum gap and spectral weight indicate a quantum critical breakdown of the polarized phase, suggesting exotic physics at intermediate Kitaev couplings. The antiferromagnetic spin 1/2 Kitaev model is known to have an intermediate phase under a magnetic field before transitioning to a fully polarized state. However, the nature of this phase for higher spins remained unclear. This paper explores the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field using tensor-network methods and high-order linked cluster expansions, uncovering an intermediate phase with distinct local magnetization patterns across different spin values.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01809-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01809-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We use tensor-network methods and high-order linked-cluster expansions to explore the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field for general spin S values. Tensor network calculations for the pure Kitaev model confirm the absence of fluxes and spin-spin correlations beyond nearest neighbors, while revealing discrete orientational symmetry breaking for S ∈ 1, 3/2, 2, consistent with the semiclassical limit. An intermediate region between Kitaev phases and the high-field polarized phase is identified for all considered spin values, showing a sequence of potential phases characterized by distinct local magnetization patterns while the total magnetization increases smoothly as a function of the field. Linked-cluster expansions for the high-field zero-momentum gap and spectral weight indicate a quantum critical breakdown of the polarized phase, suggesting exotic physics at intermediate Kitaev couplings. The antiferromagnetic spin 1/2 Kitaev model is known to have an intermediate phase under a magnetic field before transitioning to a fully polarized state. However, the nature of this phase for higher spins remained unclear. This paper explores the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field using tensor-network methods and high-order linked cluster expansions, uncovering an intermediate phase with distinct local magnetization patterns across different spin values.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.