Effective Surface Engineering for Defect Passivation and Reduction of Water Oxidation Overpotential in Benchmark 2D 𝛼‐SnWO4 Nanoplate Photoanodes

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-05 DOI:10.1002/adfm.202417398
Anitesh Anand, Aditya Raj, Debayan Mondal, Dipanjan Maity, Mukhesh K. Ganesha, Ashutosh K. Singh, Debasis De, Gobinda Gopal Khan
{"title":"Effective Surface Engineering for Defect Passivation and Reduction of Water Oxidation Overpotential in Benchmark 2D 𝛼‐SnWO4 Nanoplate Photoanodes","authors":"Anitesh Anand, Aditya Raj, Debayan Mondal, Dipanjan Maity, Mukhesh K. Ganesha, Ashutosh K. Singh, Debasis De, Gobinda Gopal Khan","doi":"10.1002/adfm.202417398","DOIUrl":null,"url":null,"abstract":"Stannous tungstate (<jats:italic>α</jats:italic>‐SnWO<jats:sub>4</jats:sub>) is a highly anticipated next‐generation metal oxide photoanode for photoelectrochemical (PEC) water oxidation because of its narrow bandgap (1.9 eV) and favorable band edge positions. Despite its high theoretical photocurrent density, its practical applicability is constrained because of poor charge transfer ability and severe surface charge recombination due to the surface states leading to slow water oxidation kinetics. Here, the effective nanoarchitectural design and surface Cl‐modification of solvothermally fabricated (121) facet 2D <jats:italic>α</jats:italic>‐SnWO<jats:sub>4</jats:sub> nanoplates arrays for PEC water splitting are demonstrated. The Cl:<jats:italic>α</jats:italic>‐SnWO<jats:sub>4</jats:sub> photoanode delivers the benchmarking photocurrent density of 1.9 mA. cm<jats:sup>−2</jats:sup> at 1.23 V<jats:sub>RHE</jats:sub> under AM1.5G radiation (100 mW cm<jats:sup>−2</jats:sup>). Surface Cl‐modification improves the visible light harvesting performance and reduces nonradiative photocarrier recombination through surface defect passivation. The DFT studies confirm the favorable tuning of electronic structure and increased delocalization of the surface Sn orbital due to Cl‐doping in SnWO<jats:sub>4</jats:sub> boosting the photogenerated hole mobility and injection at the interface. DFT simulations reveal that the surface Cl‐doping also reduces the water oxidation overpotential, increasing the OER kinetics of the Cl‐SnWO<jats:sub>4</jats:sub> photoanode. This study establishes practical and straightforward strategies to empower the water‐splitting performance of the <jats:italic>α</jats:italic>‐SnWO<jats:sub>4</jats:sub> photoanode through nanoscale architecture, facet, and surface engineering.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417398","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stannous tungstate (α‐SnWO4) is a highly anticipated next‐generation metal oxide photoanode for photoelectrochemical (PEC) water oxidation because of its narrow bandgap (1.9 eV) and favorable band edge positions. Despite its high theoretical photocurrent density, its practical applicability is constrained because of poor charge transfer ability and severe surface charge recombination due to the surface states leading to slow water oxidation kinetics. Here, the effective nanoarchitectural design and surface Cl‐modification of solvothermally fabricated (121) facet 2D α‐SnWO4 nanoplates arrays for PEC water splitting are demonstrated. The Cl:α‐SnWO4 photoanode delivers the benchmarking photocurrent density of 1.9 mA. cm−2 at 1.23 VRHE under AM1.5G radiation (100 mW cm−2). Surface Cl‐modification improves the visible light harvesting performance and reduces nonradiative photocarrier recombination through surface defect passivation. The DFT studies confirm the favorable tuning of electronic structure and increased delocalization of the surface Sn orbital due to Cl‐doping in SnWO4 boosting the photogenerated hole mobility and injection at the interface. DFT simulations reveal that the surface Cl‐doping also reduces the water oxidation overpotential, increasing the OER kinetics of the Cl‐SnWO4 photoanode. This study establishes practical and straightforward strategies to empower the water‐splitting performance of the α‐SnWO4 photoanode through nanoscale architecture, facet, and surface engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基准二维𝛼-SnWO4 纳米板光电阳极中进行有效的表面工程以实现缺陷钝化并降低水氧化过电位
钨酸亚锡(α-SnWO4)因其窄带隙(1.9 eV)和有利的带边位置而成为备受期待的下一代光电化学(PEC)水氧化金属氧化物光阳极。尽管其理论光电流密度很高,但由于电荷转移能力差以及表面态导致的严重表面电荷重组,其实际应用受到限制,从而导致水氧化动力学缓慢。本文展示了溶液热法制造的 (121) 面二维 α-SnWO4 纳米板阵列的有效纳米结构设计和表面 Cl 修饰,用于 PEC 水分离。在 AM1.5G 辐射(100 mW cm-2)下,Cl:α-SnWO4 光阳极在 1.23 VRHE 条件下可提供 1.9 mA. cm-2 的基准光电流密度。表面 Cl 改性提高了可见光收集性能,并通过表面缺陷钝化减少了非辐射光载流子重组。DFT 研究证实,由于在 SnWO4 中掺入了 Cl,电子结构发生了有利的调整,表面 Sn 轨道的脱ocal 化程度增加,从而提高了光生空穴迁移率和界面注入。DFT 模拟显示,表面掺入 Cl 还降低了水的氧化过电位,提高了 Cl-SnWO4 光阳极的 OER 动力学。这项研究确立了切实可行的直接策略,通过纳米级结构、刻面和表面工程来提高α-SnWO4光阳极的分水性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
ICAM‐1‐Expressing Extracellular Vesicles Enable Sequential Delivery Barrier‐Breaking and Microenvironment Modulating for Glioblastoma Stem Cell Inhibition High‐Throughput Computational Screening‐Driven Porous Material Discovery for Benchmark Propylene/Propane Separation Effective Surface Engineering for Defect Passivation and Reduction of Water Oxidation Overpotential in Benchmark 2D 𝛼‐SnWO4 Nanoplate Photoanodes Cognate Cobalt Core‐Shell Structure Decorated Nitrogen‐Doped Hollow Carbon Bowls Triggering Advanced Zinc‐Air Battery Rational Design of Cu3Si Interphase for 3D Micron‐Sized SiOC‐based Anode to Enable Long‐Term Cycling of Lithium‐Ion Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1