The engineered interfacial Pd-O-Ti sites on the TiO2 nanobelts to accelerate water dissociation for the alkaline hydrogen evolution

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-10-05 DOI:10.1016/j.electacta.2024.145198
Ruijing Wang, De Zhang, Sijia Luo, Lijuan Jiang, Qunlong Wang, Linlin Chen, Guang-Feng Wei, Xuefeng Wang
{"title":"The engineered interfacial Pd-O-Ti sites on the TiO2 nanobelts to accelerate water dissociation for the alkaline hydrogen evolution","authors":"Ruijing Wang, De Zhang, Sijia Luo, Lijuan Jiang, Qunlong Wang, Linlin Chen, Guang-Feng Wei, Xuefeng Wang","doi":"10.1016/j.electacta.2024.145198","DOIUrl":null,"url":null,"abstract":"Electrochemical water splitting derived by the renewable electricity is one attractive route to produce the green hydrogen. The hydrogen evolution reaction (HER) at the cathode side under the alkaline condition is relatively difficult compared with the acidic, because there is a rate-determining step of breaking strong H-OH bonding in the water molecular. Herein, the ultrafine Pd nanoparticles are uniformly distributed on the TiO<sub>2</sub> nanobelts (Pd<sub>NPs</sub>/TiO<sub>2</sub>) by the pulsed laser deposition to expose the abundant interfacial sites, showing a lower HER overpotential of 71 mV at the current density of -10 mA cm<sup>-2</sup> in 1 M KOH. The interfacial Pd-O-Ti structure on Pd<sub>NPs</sub>/TiO<sub>2</sub> provides the direct contact between active phase and the water molecules, contributing to break H-OH bond. At the same time, a selective adsorption of H on Pd and OH intermediate on TiO<sub>2</sub> is achieved in the interfacial Pd-O-Ti sites under the alkaline HER, optimizing the whole catalytic dynamic.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting derived by the renewable electricity is one attractive route to produce the green hydrogen. The hydrogen evolution reaction (HER) at the cathode side under the alkaline condition is relatively difficult compared with the acidic, because there is a rate-determining step of breaking strong H-OH bonding in the water molecular. Herein, the ultrafine Pd nanoparticles are uniformly distributed on the TiO2 nanobelts (PdNPs/TiO2) by the pulsed laser deposition to expose the abundant interfacial sites, showing a lower HER overpotential of 71 mV at the current density of -10 mA cm-2 in 1 M KOH. The interfacial Pd-O-Ti structure on PdNPs/TiO2 provides the direct contact between active phase and the water molecules, contributing to break H-OH bond. At the same time, a selective adsorption of H on Pd and OH intermediate on TiO2 is achieved in the interfacial Pd-O-Ti sites under the alkaline HER, optimizing the whole catalytic dynamic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在二氧化钛纳米颗粒上设计 Pd-O-Ti 界面位点,加速碱性氢气进化过程中水的解离
利用可再生电力进行电化学水分离是生产绿色氢气的一条极具吸引力的途径。与酸性相比,碱性条件下阴极侧的氢进化反应(HER)相对困难,因为其中存在一个速率决定步骤,即破坏水分子中的强 H-OH 键。在这里,通过脉冲激光沉积法将超细钯纳米颗粒均匀地分布在 TiO2 纳米颗粒(PdNPs/TiO2)上,从而暴露出丰富的界面位点,在 1 M KOH 中电流密度为 -10 mA cm-2 时,HER 过电位较低,仅为 71 mV。PdNPs/TiO2 上的界面 Pd-O-Ti 结构提供了活性相与水分子的直接接触,有助于断开 H-OH 键。同时,在碱性 HER 条件下,界面 Pd-O-Ti 位点实现了 H 在 Pd 上的选择性吸附和 OH 中间产物在 TiO2 上的选择性吸附,从而优化了整个催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Indium Oxide Decorated Graphitic Carbon Nitride/Multiwalled Carbon Nanotubes Ternary Composite for Supercapacitor Applications Simulating cyclic voltammetry at rough electrodes by the digital-simulation–deconvolution–convolution algorithm V/Cu/Co-mediated oxide/carbonate heterostructural nanoflowers for high-efficient electrocatalytic overall water splitting in alkaline media Unveiling the degradation mechanism of cathodic MoS2/C electrocatalysts for PEMWE applications The engineered interfacial Pd-O-Ti sites on the TiO2 nanobelts to accelerate water dissociation for the alkaline hydrogen evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1