{"title":"The power of proximity: mechanisms and biological roles of transvection","authors":"Benjamin Prud’homme","doi":"10.1016/j.gde.2024.102269","DOIUrl":null,"url":null,"abstract":"<div><div>The phenomenon of transvection, defined as a proximity-dependent interallelic interaction, has been observed in the context of complementation between mutant alleles for numerous Drosophila genes. Cases of transvection-like phenomena have also been observed in other species, including mammals. However, the potential contribution of transvection to wild-type gene regulation and the underlying mechanisms remain uncertain. Here, I review recent evidence demonstrating the relevance of transvection in physiological contexts. These findings suggest that transvection represents an additional layer of gene regulation that allows cells to fine-tune gene expression based on the proximity of homologous alleles. In addition, recent studies have measured the physical distance between interacting alleles, revealing unexpectedly large and variable distances. I will discuss how these distances are compatible with the ‘hub’ model of transcriptional regulation.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102269"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24001187","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomenon of transvection, defined as a proximity-dependent interallelic interaction, has been observed in the context of complementation between mutant alleles for numerous Drosophila genes. Cases of transvection-like phenomena have also been observed in other species, including mammals. However, the potential contribution of transvection to wild-type gene regulation and the underlying mechanisms remain uncertain. Here, I review recent evidence demonstrating the relevance of transvection in physiological contexts. These findings suggest that transvection represents an additional layer of gene regulation that allows cells to fine-tune gene expression based on the proximity of homologous alleles. In addition, recent studies have measured the physical distance between interacting alleles, revealing unexpectedly large and variable distances. I will discuss how these distances are compatible with the ‘hub’ model of transcriptional regulation.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)