Dia Advani , Nouran Farid , Muhammad Hamza Tariq , Nupur Kohli
{"title":"A systematic review of mesenchymal stem cell secretome: Functional annotations, gene clusters and proteomics analyses for bone formation","authors":"Dia Advani , Nouran Farid , Muhammad Hamza Tariq , Nupur Kohli","doi":"10.1016/j.bone.2024.117269","DOIUrl":null,"url":null,"abstract":"<div><div>The regenerative capacity of mesenchymal stem cells (MSCs) is now attributed to their ability to release paracrine factors into the extracellular matrix that boost tissue regeneration, reduce inflammation and encourage healing. Understanding the MSC secretome is crucial for shifting the prototypic conventional cell-based therapies to cell-free regenerative treatments. This systematic review aimed to analyse the functional annotations of the secretome of human adult adipose tissue and bone marrow MSCs and unveil the gene clusters responsible for bone formation. Bioinformatics tools were used to identify the biological processes, molecular functions, hallmarks and KEGG pathways of adipose and bone marrow MSC secretome proteins. We found a substantial overlap in the functional annotations and protein compositions of both adipose and bone marrow MSC secretome indicating that MSC source may be noninfluencial with regards to tissue regeneration. Additionally, a novel network pharmacology-based analysis of the secreted proteins revealed that the commonly secreted proteins within a single source interact with multiple drugable targets of bone diseases and regulate various KEGG pathway. This study unravels the secretome profile of human adult adipose and bone marrow MSCs based on the current literature and provides valuable insights into the therapeutic use of the MSC secretome for cell-free therapies.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"190 ","pages":"Article 117269"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002588","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The regenerative capacity of mesenchymal stem cells (MSCs) is now attributed to their ability to release paracrine factors into the extracellular matrix that boost tissue regeneration, reduce inflammation and encourage healing. Understanding the MSC secretome is crucial for shifting the prototypic conventional cell-based therapies to cell-free regenerative treatments. This systematic review aimed to analyse the functional annotations of the secretome of human adult adipose tissue and bone marrow MSCs and unveil the gene clusters responsible for bone formation. Bioinformatics tools were used to identify the biological processes, molecular functions, hallmarks and KEGG pathways of adipose and bone marrow MSC secretome proteins. We found a substantial overlap in the functional annotations and protein compositions of both adipose and bone marrow MSC secretome indicating that MSC source may be noninfluencial with regards to tissue regeneration. Additionally, a novel network pharmacology-based analysis of the secreted proteins revealed that the commonly secreted proteins within a single source interact with multiple drugable targets of bone diseases and regulate various KEGG pathway. This study unravels the secretome profile of human adult adipose and bone marrow MSCs based on the current literature and provides valuable insights into the therapeutic use of the MSC secretome for cell-free therapies.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.