High-Efficiency Silane Utilization in Amine-Modified Adsorbents for Direct Air Capture through Interconnected Three-Dimensional Pores.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-10-22 Epub Date: 2024-10-07 DOI:10.1021/acs.langmuir.4c02931
Jin-Rui Li, Nao Tsunoji, Mahuya Bandyopadhyay, Masahiro Sadakane
{"title":"High-Efficiency Silane Utilization in Amine-Modified Adsorbents for Direct Air Capture through Interconnected Three-Dimensional Pores.","authors":"Jin-Rui Li, Nao Tsunoji, Mahuya Bandyopadhyay, Masahiro Sadakane","doi":"10.1021/acs.langmuir.4c02931","DOIUrl":null,"url":null,"abstract":"<p><p>Economic synthesis of amine-modified solid adsorbents is pivotal for the global-scale direct air capture (DAC) technologies required to realize net-zero emissions. To address the problems of the traditional reflux method using excessively costly amino silane, we propose introducing silane by impregnation into mesoporous silica with interconnected three-dimensional pores. X-ray diffraction, Fourier transform infrared spectroscopy, N<sub>2</sub> adsorption-desorption, transmission electron and scanning electron microscopies, magic-angle spinning nuclear magnetic resonance, and elemental analysis identified the spatial distribution of amino silane in the materials with different loading levels. The results of structure characterization and a comparison with a reference experiment (using a porous support with one-dimensional pores and/or the conventional reflux method) revealed that the proposed strategy provided a uniform amine distribution, together with a high utilization efficiency of the amino silane. We also demonstrate that the obtained material has a high adsorption capacity and good recycling stability comparable to those of the previously reported amino silane modified adsorbents under simulated DAC conditions.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02931","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Economic synthesis of amine-modified solid adsorbents is pivotal for the global-scale direct air capture (DAC) technologies required to realize net-zero emissions. To address the problems of the traditional reflux method using excessively costly amino silane, we propose introducing silane by impregnation into mesoporous silica with interconnected three-dimensional pores. X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption, transmission electron and scanning electron microscopies, magic-angle spinning nuclear magnetic resonance, and elemental analysis identified the spatial distribution of amino silane in the materials with different loading levels. The results of structure characterization and a comparison with a reference experiment (using a porous support with one-dimensional pores and/or the conventional reflux method) revealed that the proposed strategy provided a uniform amine distribution, together with a high utilization efficiency of the amino silane. We also demonstrate that the obtained material has a high adsorption capacity and good recycling stability comparable to those of the previously reported amino silane modified adsorbents under simulated DAC conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在胺改性吸附剂中高效利用硅烷,通过相互连接的三维孔隙直接捕获空气。
经济地合成胺改性固体吸附剂对于实现净零排放所需的全球规模直接空气捕获(DAC)技术至关重要。为了解决使用成本过高的氨基硅烷的传统回流法所存在的问题,我们建议通过将硅烷浸渍到具有相互连接的三维孔隙的介孔二氧化硅中来引入硅烷。X 射线衍射、傅立叶变换红外光谱、N2 吸附-解吸、透射电子显微镜和扫描电子显微镜、魔角旋转核磁共振和元素分析确定了不同负载水平的材料中氨基硅烷的空间分布。结构表征结果以及与参考实验(使用具有一维孔隙的多孔支撑物和/或传统回流法)的比较结果表明,所提出的策略提供了均匀的胺分布,以及较高的氨基硅烷利用效率。我们还证明,在模拟 DAC 条件下,所获得的材料具有与之前报道的氨基硅烷改性吸附剂相当的高吸附容量和良好的回收稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Chitin Nanowhisker/Gold Nanocluster Hybrids with an Excellent Dispersion Stability via Poly(ethylene glycol) Grafting. High-Efficiency Silane Utilization in Amine-Modified Adsorbents for Direct Air Capture through Interconnected Three-Dimensional Pores. Fabrication and Performance of a Silver Nanowire Silk Conductive Fabric. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. Multilayer Adsorption Characteristics of CO2 in Organic Nanopores with Different Pore Sizes: Molecular Simulation and Ono-Kondo Lattice Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1