Jamming Giant Molecules at Interface in Organic Photovoltaics to Improve Performance and Stability.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-07 DOI:10.1002/adma.202407297
Ming Zhang, Zaiyu Wang, Lei Zhu, Rui Zeng, Xiaonan Xue, Sha Liu, Jun Yan, Zhiyuan Yang, Wenkai Zhong, Guanqing Zhou, Lixuan Kan, Jinqiu Xu, Anyang Zhang, Jiawei Deng, Zichun Zhou, Jingnan Song, Hao Jing, Shengjie Xu, Yongming Zhang, Feng Liu
{"title":"Jamming Giant Molecules at Interface in Organic Photovoltaics to Improve Performance and Stability.","authors":"Ming Zhang, Zaiyu Wang, Lei Zhu, Rui Zeng, Xiaonan Xue, Sha Liu, Jun Yan, Zhiyuan Yang, Wenkai Zhong, Guanqing Zhou, Lixuan Kan, Jinqiu Xu, Anyang Zhang, Jiawei Deng, Zichun Zhou, Jingnan Song, Hao Jing, Shengjie Xu, Yongming Zhang, Feng Liu","doi":"10.1002/adma.202407297","DOIUrl":null,"url":null,"abstract":"<p><p>A novel approach for depositing the giant molecule acceptor (GMA) at the donor-acceptor interface to enhance the efficiency and stability of organic photovoltaic (OPV) devices through a designed interface-enhanced layer-by-layer device fabrication protocol is proposed. The giant molecule acceptor DQx-Ph is mixed with the polymer donor in the bottom layer to form a polymer donor fibril phase and a mixed phase, followed by subsequent deposition of the main acceptor L8-BO. The L8-BO solution swells the bottom layer and alters the localized morphology of the mixing phase, introducing L8-BO fibrillar crystallization and pushing DQx-Ph giant molecules outwards to the fibril interfaces. Through this approach, the localized morphology and optoelectronic property of the bulk heterojunction are optimized. This configuration maintains the superior transport properties of L8-BO while integrating the high open-circuit voltage characteristics of DQx-Ph. Additionally, exciton dissociation and charge generation are simultaneously enhanced, with suppressed energy losses. A power conversion efficiency of 19.9% with improved operational stability is achieved, underscoring the importance of GMA interface jamming in advancing OPV technology. This study provides new insights into the development of ancillary OPV materials to overcome the critical limitations in OPV, revealing innovative approaches for photovoltaic technologies.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407297","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach for depositing the giant molecule acceptor (GMA) at the donor-acceptor interface to enhance the efficiency and stability of organic photovoltaic (OPV) devices through a designed interface-enhanced layer-by-layer device fabrication protocol is proposed. The giant molecule acceptor DQx-Ph is mixed with the polymer donor in the bottom layer to form a polymer donor fibril phase and a mixed phase, followed by subsequent deposition of the main acceptor L8-BO. The L8-BO solution swells the bottom layer and alters the localized morphology of the mixing phase, introducing L8-BO fibrillar crystallization and pushing DQx-Ph giant molecules outwards to the fibril interfaces. Through this approach, the localized morphology and optoelectronic property of the bulk heterojunction are optimized. This configuration maintains the superior transport properties of L8-BO while integrating the high open-circuit voltage characteristics of DQx-Ph. Additionally, exciton dissociation and charge generation are simultaneously enhanced, with suppressed energy losses. A power conversion efficiency of 19.9% with improved operational stability is achieved, underscoring the importance of GMA interface jamming in advancing OPV technology. This study provides new insights into the development of ancillary OPV materials to overcome the critical limitations in OPV, revealing innovative approaches for photovoltaic technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在有机光伏器件的界面上干扰巨分子,以提高性能和稳定性。
本文提出了一种在供体-受体界面沉积巨分子受体(GMA)的新方法,通过设计界面增强型逐层器件制造方案来提高有机光伏(OPV)器件的效率和稳定性。巨分子受体 DQx-Ph 与底层的聚合物供体混合,形成聚合物供体纤维相和混合相,然后再沉积主受体 L8-BO。L8-BO 溶液使底层膨胀,改变了混合相的局部形态,引入 L8-BO 纤维结晶,将 DQx-Ph 巨型分子向外推至纤维界面。通过这种方法,块状异质结的局部形态和光电特性得到了优化。这种配置既保持了 L8-BO 的优异传输特性,又集成了 DQx-Ph 的高开路电压特性。此外,激子解离和电荷生成同时得到增强,能量损耗得到抑制。实现了 19.9% 的功率转换效率,并提高了运行稳定性,突出了 GMA 接口干扰在推动 OPV 技术发展方面的重要性。这项研究为开发辅助 OPV 材料以克服 OPV 的关键限制提供了新的见解,揭示了光伏技术的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Crosslinkable Ligands for High-Density Photo-Patterning of Perovskite Nanocrystals. Jamming Giant Molecules at Interface in Organic Photovoltaics to Improve Performance and Stability. A NIR-II Organic Dendrimer with Superb Photothermal Performance Based on Electron-Donor Iteration for Photothermal Immunotherapy. Achieving Efficient X-ray Scintillation of Purely Organic Phosphorescent Materials by Chromophore Confinement. Switching from Molecules to Functional Materials: Breakthroughs in Photochromism With MOFs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1