Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain.
Yizhuo Wang, James E B Curson, Divya Ramnath, Kaustav Das Gupta, Robert C Reid, Denuja Karunakaran, David P Fairlie, Matthew J Sweet
{"title":"Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain.","authors":"Yizhuo Wang, James E B Curson, Divya Ramnath, Kaustav Das Gupta, Robert C Reid, Denuja Karunakaran, David P Fairlie, Matthew J Sweet","doi":"10.1042/BCJ20240380","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylase 7 (HDAC7) is a member of the class IIa family of classical HDACs with important roles in cell development, differentiation, and activation, including in macrophages and other innate immune cells. HDAC7 and other class IIa HDACs act as transcriptional repressors in the nucleus but, in some cell types, they can also act in the cytoplasm to modify non-nuclear proteins and/or scaffold signalling complexes. In macrophages, HDAC7 is a cytoplasmic protein with both pro- and anti-inflammatory functions, with the latter activity involving activation of the pentose phosphate pathway (PPP) enzyme 6-phosphogluconate dehydrogenase (6PGD) and the generation of anti-inflammatory metabolite ribulose-5-phosphate. Here, we used ectopic expression systems and biochemical approaches to investigate the mechanism by which HDAC7 promotes 6PGD enzyme activity. We reveal that HDAC7 enzyme activity is not required for its activation of 6PGD and that the N-terminal protein-protein interaction domain of HDAC7 is sufficient to initiate this response. Mechanistically, the N-terminus of HDAC7 increases the affinity of 6PGD for NADP+, promotes the generation of a shorter form of 6PGD, and enhances the formation of higher order protein complexes, implicating its scaffolding function in engagement of the PPP. This contrasts with the pro-inflammatory function of HDAC7 in macrophages, in which it promotes deacetylation of the glycolytic enzyme pyruvate kinase M2 for inflammatory cytokine production.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"1569-1584"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240380","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone deacetylase 7 (HDAC7) is a member of the class IIa family of classical HDACs with important roles in cell development, differentiation, and activation, including in macrophages and other innate immune cells. HDAC7 and other class IIa HDACs act as transcriptional repressors in the nucleus but, in some cell types, they can also act in the cytoplasm to modify non-nuclear proteins and/or scaffold signalling complexes. In macrophages, HDAC7 is a cytoplasmic protein with both pro- and anti-inflammatory functions, with the latter activity involving activation of the pentose phosphate pathway (PPP) enzyme 6-phosphogluconate dehydrogenase (6PGD) and the generation of anti-inflammatory metabolite ribulose-5-phosphate. Here, we used ectopic expression systems and biochemical approaches to investigate the mechanism by which HDAC7 promotes 6PGD enzyme activity. We reveal that HDAC7 enzyme activity is not required for its activation of 6PGD and that the N-terminal protein-protein interaction domain of HDAC7 is sufficient to initiate this response. Mechanistically, the N-terminus of HDAC7 increases the affinity of 6PGD for NADP+, promotes the generation of a shorter form of 6PGD, and enhances the formation of higher order protein complexes, implicating its scaffolding function in engagement of the PPP. This contrasts with the pro-inflammatory function of HDAC7 in macrophages, in which it promotes deacetylation of the glycolytic enzyme pyruvate kinase M2 for inflammatory cytokine production.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling