Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano
{"title":"Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods.","authors":"Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces an <i>online bilevel optimization</i> setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of <i>bilevel regret</i>, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"2854-2862"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an online bilevel optimization setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of bilevel regret, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线双级优化:在线梯度交替法的遗憾分析
本文介绍了一种在线双层优化设置,在这种设置中,一连串时变双层问题相继揭示。我们将已知的单级在线算法的遗憾边界扩展到双级设置。具体来说,我们提供了双级遗憾的新概念,开发了一种能够利用平滑性的在线交替时间平均梯度法,并给出了内外部最小化序列的路径长度的遗憾边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Interoperable Machine Learning Pipeline for Pediatric Obesity Risk Estimation. Multimodal Sleep Apnea Detection with Missing or Noisy Modalities. Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1