Mechanical Grinding Formation of Highly Reversible (002)-Textured Zinc Metal Anodes

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-07 DOI:10.1002/aenm.202403598
Zihao Zhang, Shuhang Xia, Anqi Dong, Xinjie Li, Fengmei Wang, Jinyu Yang, Jiafeng Ruan, Qin Li, Dalin Sun, Fang Fang, Yang Liu, Fei Wang
{"title":"Mechanical Grinding Formation of Highly Reversible (002)-Textured Zinc Metal Anodes","authors":"Zihao Zhang, Shuhang Xia, Anqi Dong, Xinjie Li, Fengmei Wang, Jinyu Yang, Jiafeng Ruan, Qin Li, Dalin Sun, Fang Fang, Yang Liu, Fei Wang","doi":"10.1002/aenm.202403598","DOIUrl":null,"url":null,"abstract":"The practical applications of zinc metal anode are restricted by detrimental dendrite growth and hydrogen evolution reaction (HER), especially at high current densities. Previous works have demonstrated that constructing Zn(002) texture could effectively suppress dendrite growth and HER. However, the surface grain distribution of commercial zinc metal remains indistinct. Herein, a simple mechanical grinding approach is demonstrated to construct (002)-textured zinc metal anodes. After grinding, the (002) relative texture coefficient of commercial zinc metal increases from 10.58 to 42.28, indicating a significant more (002) planes exposure. As prepared (002)-textured zinc anode exhibits a high critical current density of 141 mA cm<sup>−2</sup> and stably cycles for over 1500 cycles at 50 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>. Benefiting from the stability and fast kinetics of this (002)-textured zinc anode, the zinc-ion capacitor achieves a power density of 8500 W kg<sup>−1</sup> and long cycle over 10 000 cycles with Coulombic efficiency (CE) exceeding 99.9%. This work provides both fundamental and practical insights for dendrite-free and HER-suppressed zinc metal anodes and inspiring guidance for other metal batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The practical applications of zinc metal anode are restricted by detrimental dendrite growth and hydrogen evolution reaction (HER), especially at high current densities. Previous works have demonstrated that constructing Zn(002) texture could effectively suppress dendrite growth and HER. However, the surface grain distribution of commercial zinc metal remains indistinct. Herein, a simple mechanical grinding approach is demonstrated to construct (002)-textured zinc metal anodes. After grinding, the (002) relative texture coefficient of commercial zinc metal increases from 10.58 to 42.28, indicating a significant more (002) planes exposure. As prepared (002)-textured zinc anode exhibits a high critical current density of 141 mA cm−2 and stably cycles for over 1500 cycles at 50 mA cm−2 and 1 mAh cm−2. Benefiting from the stability and fast kinetics of this (002)-textured zinc anode, the zinc-ion capacitor achieves a power density of 8500 W kg−1 and long cycle over 10 000 cycles with Coulombic efficiency (CE) exceeding 99.9%. This work provides both fundamental and practical insights for dendrite-free and HER-suppressed zinc metal anodes and inspiring guidance for other metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械研磨形成高度可逆的 (002) 纹理锌金属阳极
金属锌阳极的实际应用受到枝晶生长和氢进化反应(HER)的限制,尤其是在高电流密度条件下。之前的研究表明,构建 Zn(002) 纹理可有效抑制枝晶生长和氢化反应。然而,商用金属锌的表面晶粒分布仍然模糊不清。在此,我们展示了一种简单的机械研磨方法来构建 (002) 纹理的锌金属阳极。研磨后,商用金属锌的 (002) 相对纹理系数从 10.58 增加到 42.28,表明 (002) 平面暴露显著增加。制备的(002)纹理锌阳极临界电流密度高达 141 mA cm-2,在 50 mA cm-2 和 1 mAh cm-2 的条件下可稳定循环超过 1500 次。得益于这种(002)质地锌阳极的稳定性和快速动力学特性,锌离子电容器的功率密度达到 8500 W kg-1,长循环次数超过 10 000 次,库仑效率(CE)超过 99.9%。这项研究为无枝晶和抑制 HER 的锌金属阳极提供了基础性和实用性见解,并为其他金属电池提供了启发性指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Effects of Dynamic Surface Transformation on the Activity and Stability of Mixed Co-Mn Cubic Spinel Oxides in the Oxygen Evolution Reaction in Alkaline Media Ultrahigh-Pressure Structural Modification in BiCuSeO Ceramics: Dense Dislocations and Exceptional Thermoelectric Performance Mechanical Grinding Formation of Highly Reversible (002)-Textured Zinc Metal Anodes A Comprehensive Study on the Parameters Affecting Magnesium Plating/Stripping Kinetics in Rechargeable Mg Batteries Degradation Mechanism and Enhanced Stability of Organolithium for Chemical Lithiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1