{"title":"Linear and Nonlinear Optical Properties of Symmetric and Asymmetric Double Triangular Quantum Dots Withinside the Presence of Magnetic Field","authors":"Emre Bahadir AL, Norshamsuri Ali, Rosdisham Endut, Syed Alwee Aljunid, Norshah Rizal Ali, Nor Roshidah Yusof","doi":"10.1002/adts.202400554","DOIUrl":null,"url":null,"abstract":"Linear and third‐order nonlinear optical absorption coefficients and relative refractive index changes in symmetric and asymmetric double triangular quantum dots are examined theoretically. The dependence of these optical properties on the magnetic field is examined. After calculating energies and wave functions within the effective mass and parabolic band approaches, analytical expressions of linear and nonlinear optical properties are obtained using the compact density matrix approach and iterative method. Numerical calculations are presented for typical GaAs/AlGaAs material. The results show that the magnetic field causes different effects on the and transitions. Moreover, the calculated results also reveal that the resonance frequency and nonlinear contribution are different in symmetric and asymmetric structures. As a result, it is concluded that the magnetic field plays a vital and important role in the electronic and optical properties of the system and can be used to tune the inter‐subband transitions and change the corresponding optical sensitivities.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"192 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Linear and third‐order nonlinear optical absorption coefficients and relative refractive index changes in symmetric and asymmetric double triangular quantum dots are examined theoretically. The dependence of these optical properties on the magnetic field is examined. After calculating energies and wave functions within the effective mass and parabolic band approaches, analytical expressions of linear and nonlinear optical properties are obtained using the compact density matrix approach and iterative method. Numerical calculations are presented for typical GaAs/AlGaAs material. The results show that the magnetic field causes different effects on the and transitions. Moreover, the calculated results also reveal that the resonance frequency and nonlinear contribution are different in symmetric and asymmetric structures. As a result, it is concluded that the magnetic field plays a vital and important role in the electronic and optical properties of the system and can be used to tune the inter‐subband transitions and change the corresponding optical sensitivities.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics