Evaluation of the Spatial Variability of the Mechanical Properties of Rocks Using Non‐Iterative Green's Function Approach and the FOSM Method

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL International Journal for Numerical and Analytical Methods in Geomechanics Pub Date : 2024-10-07 DOI:10.1002/nag.3861
Leonardo C. Mesquita, Elisa D. Sotelino, Matheus L. Peres
{"title":"Evaluation of the Spatial Variability of the Mechanical Properties of Rocks Using Non‐Iterative Green's Function Approach and the FOSM Method","authors":"Leonardo C. Mesquita, Elisa D. Sotelino, Matheus L. Peres","doi":"10.1002/nag.3861","DOIUrl":null,"url":null,"abstract":"The present work proposes a new version of the Green‐FOSM (first‐order second moment) method, which eliminates the iterative calculation process of the original version and, simultaneously, solves the convergence problems related to the mechanical properties of rocks that form the geological formation. In this calculation scheme, the iterative process is eliminated by using a matrix that correlates the nodal displacement vector with the strain vector. Considering the same computational resources, this non‐iterative version of the Green‐FOSM method is up to 200 times faster than the original iterative process. In addition, it allows analyzing problems with more than 10,000 random variables, value that in the original method is less than 3000. To demonstrate its validity, the proposed method is applied to two hypothetical models subjected to different fluid extraction processes. For all the different levels of correlation and spatial variability, the statistical results obtained by the proposed method agree well with the results obtained via Monte Carlo Simulation (MCS). The relationship between CPU times demonstrates that the proposed method is at least 50 times faster than MCS. In the end, the non‐iterative Green‐FOSM method is used to obtain the displacement, strain, and stress fields of a geological section constructed from a seismic image of Brazilian pre‐salt oil region. The results found show that, depending on the levels of spatial variability, the analyzed fields can assume values up to 30.6% higher or lower than the values obtained deterministically.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"29 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3861","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present work proposes a new version of the Green‐FOSM (first‐order second moment) method, which eliminates the iterative calculation process of the original version and, simultaneously, solves the convergence problems related to the mechanical properties of rocks that form the geological formation. In this calculation scheme, the iterative process is eliminated by using a matrix that correlates the nodal displacement vector with the strain vector. Considering the same computational resources, this non‐iterative version of the Green‐FOSM method is up to 200 times faster than the original iterative process. In addition, it allows analyzing problems with more than 10,000 random variables, value that in the original method is less than 3000. To demonstrate its validity, the proposed method is applied to two hypothetical models subjected to different fluid extraction processes. For all the different levels of correlation and spatial variability, the statistical results obtained by the proposed method agree well with the results obtained via Monte Carlo Simulation (MCS). The relationship between CPU times demonstrates that the proposed method is at least 50 times faster than MCS. In the end, the non‐iterative Green‐FOSM method is used to obtain the displacement, strain, and stress fields of a geological section constructed from a seismic image of Brazilian pre‐salt oil region. The results found show that, depending on the levels of spatial variability, the analyzed fields can assume values up to 30.6% higher or lower than the values obtained deterministically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非迭代格林函数法和 FOSM 方法评估岩石力学特性的空间变异性
本研究提出了一种新版本的格林-FOSM(一阶二矩)方法,它消除了原版本的迭代计算过程,同时解决了与构成地质构造的岩石的力学特性有关的收敛问题。在这一计算方案中,通过使用将节点位移向量与应变向量相关联的矩阵,消除了迭代过程。在计算资源相同的情况下,这种非迭代版本的格林-FOSM 方法比原来的迭代过程快 200 倍。此外,它还能分析 10,000 多个随机变量的问题,而原始方法的随机变量值不到 3000 个。为了证明该方法的有效性,我们将所提出的方法应用于两个假定的模型,这两个模型的流体提取过程各不相同。对于所有不同程度的相关性和空间可变性,建议方法得出的统计结果与蒙特卡罗模拟(MCS)得出的结果非常吻合。CPU 时间之间的关系表明,建议的方法比蒙特卡罗模拟至少快 50 倍。最后,使用非迭代 Green-FOSM 方法获得了由巴西盐前石油区地震图像构建的地质剖面的位移、应变和应力场。结果表明,根据空间变异程度的不同,所分析的场值可比确定性方法获得的值高出或低出 30.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
期刊最新文献
A POD‐TANN Approach for the Multiscale Modeling of Materials and Macro‐Element Derivation in Geomechanics Adaptive Mesh Generation and Numerical Verification for Complex Rock Structures Based on Optimization and Iteration Algorithms Issue Information Analysis of Fracturing Above Block Caving Back: A Spherical Shell Theory Approach and BEM Numerical Simulation Data‐Driven Tools to Evaluate Support Pressure, Radial Displacements, and Face Extrusion for Tunnels Excavated in Elastoplastic Grounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1