A robotic arm with open-source reconstructive workflow for in vivo bioprinting of patient-specific scaffolds

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-10-08 DOI:10.1063/5.0197123
Jacob P. Quint, Evelyn Mollocana-Lara, Mohamadmahdi Samandari, Su Ryon Shin, Indranil Sinha, Ali Tamayol
{"title":"A robotic arm with open-source reconstructive workflow for in vivo bioprinting of patient-specific scaffolds","authors":"Jacob P. Quint, Evelyn Mollocana-Lara, Mohamadmahdi Samandari, Su Ryon Shin, Indranil Sinha, Ali Tamayol","doi":"10.1063/5.0197123","DOIUrl":null,"url":null,"abstract":"In vivo bioprinting, fabricating tissue-engineered implants directly in a patient, was recently developed to overcome the logistical and clinical limitations of traditional bioprinting. In vivo printing reduces the time to treatment, allows for real-time reconstructive adjustments, minimizes transportation challenges, improves adhesion to remnant tissue and ensuing tissue integration, and utilizes the body as a bioreactor. Unfortunately, most in vivo printers are frame-based systems with limited working areas that are incompatible with the human body and lack portability. Robotic arms have recently been used to resolve these challenges, but developed systems suffered from complex deposition or cross-linking modalities and lacked bioink temperature control, drastically limiting the use of biologically favorable bioinks. Here, we created a portable and affordable robotic arm bioprinter with precise control over bioink temperature. The system maintained biomaterial ink temperatures from 6 to 60 ± 0.05 °C. We tested a bioprinting optimization strategy with different temperature-sensitive bioinks. In addition, we engineered a personalized in vivo printing strategy derived from in situ scanning and model reconstruction that utilizes freely available and open-source software. We further demonstrated the benefits of human-derived bioinks made of blood components. The system and the proposed human-derived bioinks pave the way toward the personalization of scaffold-based regenerative medicine.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"41 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0197123","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In vivo bioprinting, fabricating tissue-engineered implants directly in a patient, was recently developed to overcome the logistical and clinical limitations of traditional bioprinting. In vivo printing reduces the time to treatment, allows for real-time reconstructive adjustments, minimizes transportation challenges, improves adhesion to remnant tissue and ensuing tissue integration, and utilizes the body as a bioreactor. Unfortunately, most in vivo printers are frame-based systems with limited working areas that are incompatible with the human body and lack portability. Robotic arms have recently been used to resolve these challenges, but developed systems suffered from complex deposition or cross-linking modalities and lacked bioink temperature control, drastically limiting the use of biologically favorable bioinks. Here, we created a portable and affordable robotic arm bioprinter with precise control over bioink temperature. The system maintained biomaterial ink temperatures from 6 to 60 ± 0.05 °C. We tested a bioprinting optimization strategy with different temperature-sensitive bioinks. In addition, we engineered a personalized in vivo printing strategy derived from in situ scanning and model reconstruction that utilizes freely available and open-source software. We further demonstrated the benefits of human-derived bioinks made of blood components. The system and the proposed human-derived bioinks pave the way toward the personalization of scaffold-based regenerative medicine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有开源重建工作流程的机械臂,用于体内生物打印患者特异性支架
体内生物打印技术是一种直接在患者体内制造组织工程植入物的技术,最近的发展克服了传统生物打印技术在后勤和临床方面的局限性。体内打印缩短了治疗时间,允许实时重建调整,最大限度地减少了运输挑战,提高了与残余组织的粘附性和随后的组织整合,并利用人体作为生物反应器。遗憾的是,大多数体内打印机都是基于框架的系统,工作区域有限,与人体不兼容,而且缺乏便携性。最近,人们使用机械臂来解决这些难题,但所开发的系统存在沉积或交联方式复杂、缺乏生物墨水温度控制等问题,极大地限制了对生物有利的生物墨水的使用。在这里,我们创造了一种可精确控制生物墨水温度的便携式、经济型机械臂生物打印机。该系统可将生物材料墨水温度控制在 6 至 60 ± 0.05 °C。我们用不同温度敏感的生物墨水测试了生物打印优化策略。此外,我们还利用免费开源软件,通过原位扫描和模型重建,设计了一种个性化的体内打印策略。我们进一步展示了由血液成分制成的人源生物墨水的优势。该系统和建议的人源生物墨水为基于支架的再生医学的个性化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
A flexible phototransistor with simultaneous high mobility and detectivity Magnetic electrides: Recent advances in materials realization and application prospects Giant second harmonic generation in two-dimensional tellurene with synthesis and thickness engineering Nanoscale momentum transport by dual plasmonic vortex design Above 400 K robust ferromagnetic insulating phase in hydrogenated brownmillerite iron oxide films with distinct coordinate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1