{"title":"Data‐driven machine learning for multi‐hazard fragility surfaces in seismic resilience analysis","authors":"Mojtaba Harati, John W. van de Lindt","doi":"10.1111/mice.13356","DOIUrl":null,"url":null,"abstract":"Offshore earthquakes and subsequent tsunamis pose significant risks to many coastal populations worldwide. This paper introduces a data‐driven machine learning model that synthesizes accurate 3D earthquake–tsunami fragility surfaces from randomly selected 2D fragility curves. The integration of physics‐based simulations enhances the model's reliability for these specific hazards, making it a valuable tool for multi‐hazard analysis in earthquake–tsunami contexts. Additionally, by shifting 2D fragility curves to represent retrofitted structural systems, the model can generate earthquake–tsunami fragility surfaces for community‐level mitigation studies. While the model is demonstrated for earthquake–tsunami scenarios, its methodology architecture has the potential to contribute to other multi‐hazard situations for the initial conditions in multi‐hazard community resilience analysis.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"53 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13356","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Offshore earthquakes and subsequent tsunamis pose significant risks to many coastal populations worldwide. This paper introduces a data‐driven machine learning model that synthesizes accurate 3D earthquake–tsunami fragility surfaces from randomly selected 2D fragility curves. The integration of physics‐based simulations enhances the model's reliability for these specific hazards, making it a valuable tool for multi‐hazard analysis in earthquake–tsunami contexts. Additionally, by shifting 2D fragility curves to represent retrofitted structural systems, the model can generate earthquake–tsunami fragility surfaces for community‐level mitigation studies. While the model is demonstrated for earthquake–tsunami scenarios, its methodology architecture has the potential to contribute to other multi‐hazard situations for the initial conditions in multi‐hazard community resilience analysis.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.