Defect-Driven Evolution of Oxo-Coordinated Cobalt Active Sites with Rapid Structural Transformation for Efficient Water Oxidation.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-22 Epub Date: 2024-10-10 DOI:10.1021/acsnano.4c09856
Jinseok Koh, Choah Kwon, Hyunjeong Kim, Eunchong Lee, Akihiko Machida, Yuki Nakahira, Yun Jeong Hwang, Kouji Sakaki, Sangtae Kim, Eun Seon Cho
{"title":"Defect-Driven Evolution of Oxo-Coordinated Cobalt Active Sites with Rapid Structural Transformation for Efficient Water Oxidation.","authors":"Jinseok Koh, Choah Kwon, Hyunjeong Kim, Eunchong Lee, Akihiko Machida, Yuki Nakahira, Yun Jeong Hwang, Kouji Sakaki, Sangtae Kim, Eun Seon Cho","doi":"10.1021/acsnano.4c09856","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructing the surface nature of metal-organic frameworks (MOFs) as precatalytic structures is a promising methodology for improving electrocatalytic performance. However, regulating the structural evolution of MOFs during electrolysis remains highly uncontrollable and lacks an in-depth understanding of the role of <i>in situ</i>-derived active sites. Here, we suggest a simple approach to fine-tune the symmetry of Co-MOFs with an oxo-coordinated asymmetric coordination that acts as a prototypical structure motif for the oxygen evolution reaction (OER). Through a facile thermal treatment, the Co-N4 configuration of Co-MOFs transforms to the distorted Co-N3-oxo configuration of defective Co-ligand nanoclusters. By <i>operando</i> spectroscopic characterization, the reconstructed Co-N3-oxo structure enables a rapid structural transition toward homogeneous oxyhydroxides. Moreover, the defective nature of the precatalytic structure regulates the surface Co-O bonding environment with abundant μ<sub>2</sub>-O-Co<sup>3+</sup> sites, thereby exhibiting highly enhanced OER activity with an overpotential of 256 mV at 10 mA cm<sup>-2</sup> and excellent durability for 100 h, compared with the pristine Co-MOFs. Atomistic simulations reveal that the effect of OER intermediates on the oxyhydroxides gets distributed among neighboring Co ions, promoting balanced binding of the intermediates. This work highlights an effective strategy to design the MOF-based structure for optimizing the surface nature, thus enhancing the electrocatalytic activity.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09856","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing the surface nature of metal-organic frameworks (MOFs) as precatalytic structures is a promising methodology for improving electrocatalytic performance. However, regulating the structural evolution of MOFs during electrolysis remains highly uncontrollable and lacks an in-depth understanding of the role of in situ-derived active sites. Here, we suggest a simple approach to fine-tune the symmetry of Co-MOFs with an oxo-coordinated asymmetric coordination that acts as a prototypical structure motif for the oxygen evolution reaction (OER). Through a facile thermal treatment, the Co-N4 configuration of Co-MOFs transforms to the distorted Co-N3-oxo configuration of defective Co-ligand nanoclusters. By operando spectroscopic characterization, the reconstructed Co-N3-oxo structure enables a rapid structural transition toward homogeneous oxyhydroxides. Moreover, the defective nature of the precatalytic structure regulates the surface Co-O bonding environment with abundant μ2-O-Co3+ sites, thereby exhibiting highly enhanced OER activity with an overpotential of 256 mV at 10 mA cm-2 and excellent durability for 100 h, compared with the pristine Co-MOFs. Atomistic simulations reveal that the effect of OER intermediates on the oxyhydroxides gets distributed among neighboring Co ions, promoting balanced binding of the intermediates. This work highlights an effective strategy to design the MOF-based structure for optimizing the surface nature, thus enhancing the electrocatalytic activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化配位钴活性位点的缺陷驱动演化与高效水氧化的快速结构转变。
将金属有机框架(MOFs)的表面性质重构为催化前结构,是提高电催化性能的一种很有前途的方法。然而,在电解过程中调节 MOFs 的结构演变仍然非常不可控,而且缺乏对原位衍生活性位点作用的深入了解。在此,我们提出了一种微调 Co-MOF 对称性的简单方法,这种方法具有氧化配位的不对称配位,是氧进化反应(OER)的原型结构图案。通过简单的热处理,Co-MOFs 的 Co-N4 构型转变为有缺陷 Co 配体纳米团簇的扭曲 Co-N3-oxo 构型。通过操作光谱表征,重构的 Co-N3-oxo 结构实现了向均相氧基氢氧化物的快速结构转变。此外,与原始 Co-MOF 相比,前催化结构的缺陷性调节了表面 Co-O 键合环境,使其具有丰富的 μ2-O-Co3+ 位点,从而表现出高度增强的 OER 活性,在 10 mA cm-2 时过电位为 256 mV,并具有 100 h 的出色耐久性。原子模拟显示,OER 中间体对氧氢氧基的影响分布在相邻的 Co 离子之间,促进了中间体的平衡结合。这项工作强调了设计基于 MOF 的结构以优化表面性质的有效策略,从而提高了电催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A Direct Current Self-Sustained Moisture-Electric Generator with 1D/2D Hierarchical Nanostructure for Continuous Operation of Off-Grid Electronics. Atomic Manipulation to Create High-Valent Fe4+ for Efficient and Ultrastable Oxygen Evolution at Industrial-Level Current Density. Defect-Driven Evolution of Oxo-Coordinated Cobalt Active Sites with Rapid Structural Transformation for Efficient Water Oxidation. Endogenous Magnetic Lipid Droplet-Mediated Cascade-Targeted Sonodynamic Therapy as an Approach to Reversing Breast Cancer Multidrug Resistance. Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1