{"title":"Growth, Morphology and Respiratory Cost Responses to Salinity in the Mangrove Plant Rhizophora Stylosa Depend on Growth Temperature.","authors":"Tomomi Inoue, Tomoko Fujimura, Ko Noguchi","doi":"10.1111/pce.15184","DOIUrl":null,"url":null,"abstract":"<p><p>Mangrove plants, which have evolved to inhabit tidal flats, may adjust their physiological and morphological traits to optimize their growth in saline habitats. Furthermore, the confined distribution of mangroves within warm regions suggests that warm temperature is advantageous to their growth in saline environments. We analyzed growth, morphology and respiratory responses to moderate salinity and temperature in a mangrove species, Rhizophora stylosa. The growth of R. stylosa was accelerated in moderate salinity compared with its growth in fresh water. Under warm conditions, the increased growth is accompanied by increased specific leaf area (SLA) and specific root length. Low temperature resulted in a low relative growth rate due to a low leaf area ratio and small SLA, regardless of salinity. Salinity lowered the ratio of the amounts of alternative oxidase to cytochrome c oxidase in the mitochondrial respiratory chain in leaves. Salinity enhanced the leaf respiration rate for maintenance, but under warm conditions this enhancement was compensated by a low leaf respiration rate for growth. In contrast, salinity enhanced overall leaf respiration rates at low temperature. Our results indicate that under moderate saline conditions R. stylosa leaves require warm temperatures to grow with a high rate of resource acquisition without enhancing respiratory cost.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"965-977"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15184","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mangrove plants, which have evolved to inhabit tidal flats, may adjust their physiological and morphological traits to optimize their growth in saline habitats. Furthermore, the confined distribution of mangroves within warm regions suggests that warm temperature is advantageous to their growth in saline environments. We analyzed growth, morphology and respiratory responses to moderate salinity and temperature in a mangrove species, Rhizophora stylosa. The growth of R. stylosa was accelerated in moderate salinity compared with its growth in fresh water. Under warm conditions, the increased growth is accompanied by increased specific leaf area (SLA) and specific root length. Low temperature resulted in a low relative growth rate due to a low leaf area ratio and small SLA, regardless of salinity. Salinity lowered the ratio of the amounts of alternative oxidase to cytochrome c oxidase in the mitochondrial respiratory chain in leaves. Salinity enhanced the leaf respiration rate for maintenance, but under warm conditions this enhancement was compensated by a low leaf respiration rate for growth. In contrast, salinity enhanced overall leaf respiration rates at low temperature. Our results indicate that under moderate saline conditions R. stylosa leaves require warm temperatures to grow with a high rate of resource acquisition without enhancing respiratory cost.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.