Proanthocyanidin Regulates NETosis and Inhibits the Growth and Proliferation of Liver Cancer Cells - In Vivo, In Vitro and In Silico Investigation.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2024-10-09 DOI:10.1007/s12013-024-01557-6
Chenhui Wang, Wu Xia
{"title":"Proanthocyanidin Regulates NETosis and Inhibits the Growth and Proliferation of Liver Cancer Cells - In Vivo, In Vitro and In Silico Investigation.","authors":"Chenhui Wang, Wu Xia","doi":"10.1007/s12013-024-01557-6","DOIUrl":null,"url":null,"abstract":"<p><p>Liver cancer ranks third in global cancer-related mortality, with about 700,000 deaths recorded yearly, making it one of the most common cancers worldwide. Even though prognoses differ according to the severity of the diseases, many patients now exhibit an increased life cycle since the implementation of chemotherapy. In the current study, we investigated the effect of proanthocyanidin ‒a polyphenol molecule found in many plants‒ on the proliferation and invasion of liver cancer cells. In particular, we determined the effect of proanthocyanidin on the serum levels of four strategic liver cancer target, TNFα, IL-6, cfDNA, and IL-1β. Further molecular insight on the inhibitory mechanism of proanthocyanidin against TNFα, IL-6, and IL-1β was obtained via molecular docking, molecular dynamics simulations and binding free energy calculations. Results showed that proanthocyanidin inhibited the growth of HepG2 and HEP3B cells, and effectively reduced clonogenic survival and invasion potential when compared to control cells. Proanthocyanidin was also found to suppress the expression of Bcl-2 (26 kDa) protein in HepG2 cells, while increasing the expression of Bax (21 kDa). Molecular dynamics (MD) and thermodynamic binding free energy calculations showed that proanthocyanidin maintained stable binding within the active site of target proteins across the entire 100 ns MD simulation period, and its binding affinity outscored respective control molecules.In conclusion, the multifaceted analysis showcased in this study demonstrated promising anti-cancer effect of proanthocyanidin on HepG2 and HEP3B cancer cells, highlighting its potential as a viable liver cancer therapeutic alternative.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01557-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver cancer ranks third in global cancer-related mortality, with about 700,000 deaths recorded yearly, making it one of the most common cancers worldwide. Even though prognoses differ according to the severity of the diseases, many patients now exhibit an increased life cycle since the implementation of chemotherapy. In the current study, we investigated the effect of proanthocyanidin ‒a polyphenol molecule found in many plants‒ on the proliferation and invasion of liver cancer cells. In particular, we determined the effect of proanthocyanidin on the serum levels of four strategic liver cancer target, TNFα, IL-6, cfDNA, and IL-1β. Further molecular insight on the inhibitory mechanism of proanthocyanidin against TNFα, IL-6, and IL-1β was obtained via molecular docking, molecular dynamics simulations and binding free energy calculations. Results showed that proanthocyanidin inhibited the growth of HepG2 and HEP3B cells, and effectively reduced clonogenic survival and invasion potential when compared to control cells. Proanthocyanidin was also found to suppress the expression of Bcl-2 (26 kDa) protein in HepG2 cells, while increasing the expression of Bax (21 kDa). Molecular dynamics (MD) and thermodynamic binding free energy calculations showed that proanthocyanidin maintained stable binding within the active site of target proteins across the entire 100 ns MD simulation period, and its binding affinity outscored respective control molecules.In conclusion, the multifaceted analysis showcased in this study demonstrated promising anti-cancer effect of proanthocyanidin on HepG2 and HEP3B cancer cells, highlighting its potential as a viable liver cancer therapeutic alternative.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原花青素调节NETosis并抑制肝癌细胞的生长和增殖--体内、体外和硅学研究。
肝癌在全球癌症相关死亡率中排名第三,每年约有 70 万人死亡,是全球最常见的癌症之一。尽管疾病的严重程度不同,预后也不尽相同,但自从实施化疗以来,许多患者的生命周期都得到了延长。在当前的研究中,我们调查了原花青素(一种存在于多种植物中的多酚分子)对肝癌细胞增殖和侵袭的影响。特别是,我们测定了原花青素对四种肝癌战略靶标--TNFα、IL-6、cfDNA 和 IL-1β 血清水平的影响。通过分子对接、分子动力学模拟和结合自由能计算,进一步了解了原花青素对TNFα、IL-6和IL-1β的抑制机制。结果表明,与对照细胞相比,原花青素能抑制HepG2和HEP3B细胞的生长,并有效降低克隆存活率和侵袭潜力。研究还发现,原花青素能抑制HepG2细胞中Bcl-2(26 kDa)蛋白的表达,同时增加Bax(21 kDa)蛋白的表达。分子动力学(MD)和热力学结合自由能计算显示,原花青素在整个100 ns的MD模拟期间都能在目标蛋白的活性位点内保持稳定的结合,其结合亲和力优于相应的对照分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Iron Overloading Potentiates the Antitumor Activity of 5-Fluorouracil by Promoting Apoptosis and Ferroptosis in Colorectal Cancer Cells. Navigating the Fractional Calcium Dynamics of Orai Mechanism in Polar Dimensions. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Rutin Ameliorates Inflammation and Oxidative Stress in Ulcerative Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Study on the Role of EPHB6 in Inhibiting the Malignant Progression of Cervical Cancer C33A Cells by Binding to CBX7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1