Forecasting severe respiratory disease hospitalizations using machine learning algorithms.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-09 DOI:10.1186/s12911-024-02702-0
Steffen Albrecht, David Broderick, Katharina Dost, Isabella Cheung, Nhung Nghiem, Milton Wu, Johnny Zhu, Nooriyan Poonawala-Lohani, Sarah Jamison, Damayanthi Rasanathan, Sue Huang, Adrian Trenholme, Alicia Stanley, Shirley Lawrence, Samantha Marsh, Lorraine Castelino, Janine Paynter, Nikki Turner, Peter McIntyre, Patricia Riddle, Cameron Grant, Gillian Dobbie, Jörg Simon Wicker
{"title":"Forecasting severe respiratory disease hospitalizations using machine learning algorithms.","authors":"Steffen Albrecht, David Broderick, Katharina Dost, Isabella Cheung, Nhung Nghiem, Milton Wu, Johnny Zhu, Nooriyan Poonawala-Lohani, Sarah Jamison, Damayanthi Rasanathan, Sue Huang, Adrian Trenholme, Alicia Stanley, Shirley Lawrence, Samantha Marsh, Lorraine Castelino, Janine Paynter, Nikki Turner, Peter McIntyre, Patricia Riddle, Cameron Grant, Gillian Dobbie, Jörg Simon Wicker","doi":"10.1186/s12911-024-02702-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Forecasting models predicting trends in hospitalization rates have the potential to inform hospital management during seasonal epidemics of respiratory diseases and the associated surges caused by acute hospital admissions. Hospital bed requirements for elective surgery could be better planned if it were possible to foresee upcoming peaks in severe respiratory illness admissions. Forecasting models can also guide the use of intervention strategies to decrease the spread of respiratory pathogens and thus prevent local health system overload. In this study, we explore the capability of forecasting models to predict the number of hospital admissions in Auckland, New Zealand, within a three-week time horizon. Furthermore, we evaluate probabilistic forecasts and the impact on model performance when integrating laboratory data describing the circulation of respiratory viruses.</p><p><strong>Methods: </strong>The dataset used for this exploration results from active hospital surveillance, in which the World Health Organization Severe Acute Respiratory Infection (SARI) case definition was consistently used. This research nurse-led surveillance has been implemented in two public hospitals in Auckland and provides a systematic laboratory testing of SARI patients for nine respiratory viruses, including influenza, respiratory syncytial virus, and rhinovirus. The forecasting strategies used comprise automatic machine learning, one of the most recent generative pre-trained transformers, and established artificial neural network algorithms capable of univariate and multivariate forecasting.</p><p><strong>Results: </strong>We found that machine learning models compute more accurate forecasts in comparison to naïve seasonal models. Furthermore, we analyzed the impact of reducing the temporal resolution of forecasts, which decreased the model error of point forecasts and made probabilistic forecasting more reliable. An additional analysis that used the laboratory data revealed strong season-to-season variations in the incidence of respiratory viruses and how this correlates with total hospitalization cases. These variations could explain why it was not possible to improve forecasts by integrating this data.</p><p><strong>Conclusions: </strong>Active SARI surveillance and consistent data collection over time enable these data to be used to predict hospital bed utilization. These findings show the potential of machine learning as support for informing systems for proactive hospital management.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02702-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Forecasting models predicting trends in hospitalization rates have the potential to inform hospital management during seasonal epidemics of respiratory diseases and the associated surges caused by acute hospital admissions. Hospital bed requirements for elective surgery could be better planned if it were possible to foresee upcoming peaks in severe respiratory illness admissions. Forecasting models can also guide the use of intervention strategies to decrease the spread of respiratory pathogens and thus prevent local health system overload. In this study, we explore the capability of forecasting models to predict the number of hospital admissions in Auckland, New Zealand, within a three-week time horizon. Furthermore, we evaluate probabilistic forecasts and the impact on model performance when integrating laboratory data describing the circulation of respiratory viruses.

Methods: The dataset used for this exploration results from active hospital surveillance, in which the World Health Organization Severe Acute Respiratory Infection (SARI) case definition was consistently used. This research nurse-led surveillance has been implemented in two public hospitals in Auckland and provides a systematic laboratory testing of SARI patients for nine respiratory viruses, including influenza, respiratory syncytial virus, and rhinovirus. The forecasting strategies used comprise automatic machine learning, one of the most recent generative pre-trained transformers, and established artificial neural network algorithms capable of univariate and multivariate forecasting.

Results: We found that machine learning models compute more accurate forecasts in comparison to naïve seasonal models. Furthermore, we analyzed the impact of reducing the temporal resolution of forecasts, which decreased the model error of point forecasts and made probabilistic forecasting more reliable. An additional analysis that used the laboratory data revealed strong season-to-season variations in the incidence of respiratory viruses and how this correlates with total hospitalization cases. These variations could explain why it was not possible to improve forecasts by integrating this data.

Conclusions: Active SARI surveillance and consistent data collection over time enable these data to be used to predict hospital bed utilization. These findings show the potential of machine learning as support for informing systems for proactive hospital management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习算法预测严重呼吸道疾病住院情况。
背景:在呼吸道疾病季节性流行期间,预测住院率趋势的预测模型有可能为医院管理提供信息,并为急诊入院人数激增提供相关信息。如果能预见即将到来的严重呼吸道疾病入院高峰,就能更好地规划择期手术的病床需求。预测模型还能指导干预策略的使用,以减少呼吸道病原体的传播,从而防止当地医疗系统超负荷运转。在本研究中,我们探讨了预测模型预测新西兰奥克兰三周内入院人数的能力。此外,我们还评估了概率预测以及在整合描述呼吸道病毒循环的实验室数据时对模型性能的影响:本次研究使用的数据集来自医院的主动监测,其中一直使用世界卫生组织的严重急性呼吸道感染(SARI)病例定义。奥克兰的两家公立医院实施了这种由研究护士主导的监测,对 SARI 患者进行九种呼吸道病毒的系统实验室检测,包括流感、呼吸道合胞病毒和鼻病毒。所使用的预测策略包括自动机器学习、最新的生成预训练变换器之一以及能够进行单变量和多变量预测的成熟人工神经网络算法:结果:我们发现,机器学习模型比天真的季节性模型能做出更准确的预测。此外,我们还分析了降低预报时间分辨率的影响,这降低了点预报的模型误差,使概率预报更加可靠。使用实验室数据进行的另一项分析表明,呼吸道病毒的发病率在季节与季节之间存在很大差异,而且这种差异与住院病例总数之间存在关联。这些变化可以解释为什么不能通过整合这些数据来改进预测:积极的 SARI 监测和长期持续的数据收集使这些数据能够用于预测医院床位使用情况。这些研究结果表明,机器学习在为主动式医院管理系统提供信息支持方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1