{"title":"The Role of Bovine Amniotic Membrane and Hydroxyapatite for the Ridge Preservation.","authors":"Octarina Octarina, Elly Munadziroh, Fathilah Abdul Razak, Ekowati Handharyani, Meircurius Dwi Condro Surboyo","doi":"10.1155/2024/4053527","DOIUrl":null,"url":null,"abstract":"<p><p>Ridge preservation is an important technique for maintaining the dimensions of the alveolar bone following tooth extraction, which is crucial for successful tooth rehabilitation. The combination of bovine amniotic membrane and hydroxyapatite has shown promise as a scaffold material containing growth factors that can stimulate osteogenic-related factors such as bone morphogenetic protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), and osteocalcin. This stimulation leads to collagen production and osteoblast proliferation, resulting in new bone formation. In this study, bovine amniotic membrane-hydroxyapatite (BAM-HA) composites were prepared using three different ratios of bovine amniotic membrane and hydroxyapatite (2 : 3, 3 : 7, 7 : 13). Thirty <i>Sprague-Dawley</i> rats had their first incisors extracted, and different types of BAM-HA were applied for ridge preservation. The control group received no treatment, while the positive control group was given xenograft. After 14 and 28 days, the animals were sacrificed, and immunohistochemical analysis was performed to evaluate the expression of BMP2, RUNX2, and osteocalcin. Additionally, a histological examination was conducted to analyse collagen thickness and osteoblast cell proliferation. The results demonstrated that the application of BAM-HA significantly increased collagen density, osteoblast cell proliferation, and the expression of BMP2, RUNX2, and osteoclacin compared to the control group (<i>p</i> < 0.05) on both days 14 and 28. Furthermore, increasing the hydroxyapatite content in the composite was found to enhance collagen thickness, osteoblast cell proliferation, and the expression of osteogenic-related factors. These preliminary findings suggest that the combination of BAM-HA can be used for ridge preservation to prevent further bone resorption following tooth extraction.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"4053527"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4053527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Ridge preservation is an important technique for maintaining the dimensions of the alveolar bone following tooth extraction, which is crucial for successful tooth rehabilitation. The combination of bovine amniotic membrane and hydroxyapatite has shown promise as a scaffold material containing growth factors that can stimulate osteogenic-related factors such as bone morphogenetic protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), and osteocalcin. This stimulation leads to collagen production and osteoblast proliferation, resulting in new bone formation. In this study, bovine amniotic membrane-hydroxyapatite (BAM-HA) composites were prepared using three different ratios of bovine amniotic membrane and hydroxyapatite (2 : 3, 3 : 7, 7 : 13). Thirty Sprague-Dawley rats had their first incisors extracted, and different types of BAM-HA were applied for ridge preservation. The control group received no treatment, while the positive control group was given xenograft. After 14 and 28 days, the animals were sacrificed, and immunohistochemical analysis was performed to evaluate the expression of BMP2, RUNX2, and osteocalcin. Additionally, a histological examination was conducted to analyse collagen thickness and osteoblast cell proliferation. The results demonstrated that the application of BAM-HA significantly increased collagen density, osteoblast cell proliferation, and the expression of BMP2, RUNX2, and osteoclacin compared to the control group (p < 0.05) on both days 14 and 28. Furthermore, increasing the hydroxyapatite content in the composite was found to enhance collagen thickness, osteoblast cell proliferation, and the expression of osteogenic-related factors. These preliminary findings suggest that the combination of BAM-HA can be used for ridge preservation to prevent further bone resorption following tooth extraction.