{"title":"Dynamic modeling of human error in industrial maintenance through structural analysis and system dynamics.","authors":"Vahideh Bafandegan Emroozi, Mostafa Kazemi, Alireza Pooya, Mahdi Doostparast","doi":"10.1111/risa.17652","DOIUrl":null,"url":null,"abstract":"<p><p>Human error constitutes a significant cause of accidents across diverse industries, leading to adverse consequences and heightened disruptions in maintenance operations. Organizations can enhance their decision-making process by quantifying human errors and identifying the underlying influencing factors, thereby mitigating their repercussions. Consequently, it becomes crucial to examine the value of human error probability (HEP) during these activities. The objective of this paper is to determine and simulate HEP in maintenance tasks at a cement factory, utilizing performance shaping factors (PSFs). The research employs the cross-impact matrix multiplication applied to classification (MICMAC) analysis method to evaluate the dependencies, impacts, and relationships among the factors influencing human error. This approach classifies and assesses the dependencies and impacts of different factors on HEP, occupational accidents, and related costs. The study also underscores that PSFs can dynamically change under the influence of other variables, emphasizing the necessity to forecast the behavior of human error over time. Therefore, this paper utilizes the MICMAC method to analyze the interdependencies, relationships, and impact levels among different variables. These relationships are then utilized to optimize the implementation of the system dynamics (SD) method. An SD model is employed to forecast the system's behavior, and multiple scenarios are presented. By considering the HEP value, managers can adjust organizational conditions and personnel to ensure acceptability. The paper also presents various scenarios related to HEP to assist managers in making informed decisions.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.17652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Human error constitutes a significant cause of accidents across diverse industries, leading to adverse consequences and heightened disruptions in maintenance operations. Organizations can enhance their decision-making process by quantifying human errors and identifying the underlying influencing factors, thereby mitigating their repercussions. Consequently, it becomes crucial to examine the value of human error probability (HEP) during these activities. The objective of this paper is to determine and simulate HEP in maintenance tasks at a cement factory, utilizing performance shaping factors (PSFs). The research employs the cross-impact matrix multiplication applied to classification (MICMAC) analysis method to evaluate the dependencies, impacts, and relationships among the factors influencing human error. This approach classifies and assesses the dependencies and impacts of different factors on HEP, occupational accidents, and related costs. The study also underscores that PSFs can dynamically change under the influence of other variables, emphasizing the necessity to forecast the behavior of human error over time. Therefore, this paper utilizes the MICMAC method to analyze the interdependencies, relationships, and impact levels among different variables. These relationships are then utilized to optimize the implementation of the system dynamics (SD) method. An SD model is employed to forecast the system's behavior, and multiple scenarios are presented. By considering the HEP value, managers can adjust organizational conditions and personnel to ensure acceptability. The paper also presents various scenarios related to HEP to assist managers in making informed decisions.
期刊介绍:
Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include:
• Human health and safety risks
• Microbial risks
• Engineering
• Mathematical modeling
• Risk characterization
• Risk communication
• Risk management and decision-making
• Risk perception, acceptability, and ethics
• Laws and regulatory policy
• Ecological risks.