{"title":"Cancer detection with various classification models: A comprehensive feature analysis using HMM to extract a nucleotide pattern","authors":"Vijay Kalal, Brajesh Kumar Jha","doi":"10.1016/j.compbiolchem.2024.108215","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a novel feature extraction method for identifying complex patterns in genomic sequences by employing the Hidden Markov Model (HMM). In this study, we use HMM to identify gene nucleotide patterns that are specific to malignant and non-malignant cells. Crucial genetic components DNA and RNA are involved in many biological processes that impact both healthy and malignant cells. Early patient identification is essential to successful cancer diagnosis and therapy. Varying nucleotide patterns indicate different cellular responses, which are important to understanding the molecular causes of cancer and associated disorders. We present a detailed study of nucleotide patterns in whole raw nucleotide sequences with variations in both protein sequence (CDS) and non-protein sequence (NCDS) in both malignant and non-malignant cells. Nucleotide prediction has been achieved while computational expenses are reduced by using the proposed HMM for feature extraction and selection. The classification models implemented in this work for cancer detection are Gradient-Boosted Decision Trees (GBDT), Random Forests (RF), Decision Trees (DT), and Support Vector Machines (SVM) with kernels. The suggested classification model's accuracy and 10-fold cross-validation have been validated via comprehensive case studies. The results reveal that DT and ensemble learning techniques significantly differentiate between malignant and non-malignant DNA sequences. SVM with suitable kernels improves cancer detection accuracy significantly. Combining feature reduction approaches with nucleotide pattern classifiers based on Hidden Markov models improves performance and ensures reliable cancer detection.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108215"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel feature extraction method for identifying complex patterns in genomic sequences by employing the Hidden Markov Model (HMM). In this study, we use HMM to identify gene nucleotide patterns that are specific to malignant and non-malignant cells. Crucial genetic components DNA and RNA are involved in many biological processes that impact both healthy and malignant cells. Early patient identification is essential to successful cancer diagnosis and therapy. Varying nucleotide patterns indicate different cellular responses, which are important to understanding the molecular causes of cancer and associated disorders. We present a detailed study of nucleotide patterns in whole raw nucleotide sequences with variations in both protein sequence (CDS) and non-protein sequence (NCDS) in both malignant and non-malignant cells. Nucleotide prediction has been achieved while computational expenses are reduced by using the proposed HMM for feature extraction and selection. The classification models implemented in this work for cancer detection are Gradient-Boosted Decision Trees (GBDT), Random Forests (RF), Decision Trees (DT), and Support Vector Machines (SVM) with kernels. The suggested classification model's accuracy and 10-fold cross-validation have been validated via comprehensive case studies. The results reveal that DT and ensemble learning techniques significantly differentiate between malignant and non-malignant DNA sequences. SVM with suitable kernels improves cancer detection accuracy significantly. Combining feature reduction approaches with nucleotide pattern classifiers based on Hidden Markov models improves performance and ensures reliable cancer detection.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.