Na Liu, Ye Yuan, Guodong Wu, Sai Zhang, Jie Leng, Lihong Wan
{"title":"Multi-label remote sensing classification with self-supervised gated multi-modal transformers.","authors":"Na Liu, Ye Yuan, Guodong Wu, Sai Zhang, Jie Leng, Lihong Wan","doi":"10.3389/fncom.2024.1404623","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With the great success of Transformers in the field of machine learning, it is also gradually attracting widespread interest in the field of remote sensing (RS). However, the research in the field of remote sensing has been hampered by the lack of large labeled data sets and the inconsistency of data modes caused by the diversity of RS platforms. With the rise of self-supervised learning (SSL) algorithms in recent years, RS researchers began to pay attention to the application of \"pre-training and fine-tuning\" paradigm in RS. However, there are few researches on multi-modal data fusion in remote sensing field. Most of them choose to use only one of the modal data or simply splice multiple modal data roughly.</p><p><strong>Method: </strong>In order to study a more efficient multi-modal data fusion scheme, we propose a multi-modal fusion mechanism based on gated unit control (MGSViT). In this paper, we pretrain the ViT model based on BigEarthNet dataset by combining two commonly used SSL algorithms, and propose an intra-modal and inter-modal gated fusion unit for feature learning by combining multispectral (MS) and synthetic aperture radar (SAR). Our method can effectively combine different modal data to extract key feature information.</p><p><strong>Results and discussion: </strong>After fine-tuning and comparison experiments, we outperform the most advanced algorithms in all downstream classification tasks. The validity of our proposed method is verified.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1404623","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: With the great success of Transformers in the field of machine learning, it is also gradually attracting widespread interest in the field of remote sensing (RS). However, the research in the field of remote sensing has been hampered by the lack of large labeled data sets and the inconsistency of data modes caused by the diversity of RS platforms. With the rise of self-supervised learning (SSL) algorithms in recent years, RS researchers began to pay attention to the application of "pre-training and fine-tuning" paradigm in RS. However, there are few researches on multi-modal data fusion in remote sensing field. Most of them choose to use only one of the modal data or simply splice multiple modal data roughly.
Method: In order to study a more efficient multi-modal data fusion scheme, we propose a multi-modal fusion mechanism based on gated unit control (MGSViT). In this paper, we pretrain the ViT model based on BigEarthNet dataset by combining two commonly used SSL algorithms, and propose an intra-modal and inter-modal gated fusion unit for feature learning by combining multispectral (MS) and synthetic aperture radar (SAR). Our method can effectively combine different modal data to extract key feature information.
Results and discussion: After fine-tuning and comparison experiments, we outperform the most advanced algorithms in all downstream classification tasks. The validity of our proposed method is verified.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro