Optimization of the electron transfer kinetics between a photoanode and biocathode for enhanced carbon-neutral pollutant removal in photocatalytic fuel cells†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-10-10 DOI:10.1039/D4TA05290K
Xiaofei Gu, Jianyu Han, Zhi Wang, Yixin Hong, Tianyi Huang, Yafeng Wu, Yuanjian Zhang and Songqin Liu
{"title":"Optimization of the electron transfer kinetics between a photoanode and biocathode for enhanced carbon-neutral pollutant removal in photocatalytic fuel cells†","authors":"Xiaofei Gu, Jianyu Han, Zhi Wang, Yixin Hong, Tianyi Huang, Yafeng Wu, Yuanjian Zhang and Songqin Liu","doi":"10.1039/D4TA05290K","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic fuel cells (PFCs) can harness energy from organic waste for electricity generation. However, incorporating CO<small><sub>2</sub></small> reduction into PFCs to achieve carbon neutrality remains a significant challenge due to substantial thermodynamic and kinetic barriers. Herein, a PFC is constructed using a formate dehydrogenase (FDH)-based biocathode and S-scheme heterojunction TiO<small><sub>2</sub></small>/CdS engineered photoanode. The resulting PFC integrates photoanodic pollutant degradation with bio-cathodic CO<small><sub>2</sub></small> reduction to achieve a formate production rate of 7.13 μmol h<small><sup>−1</sup></small> with high selectivity and CO<small><sub>2</sub></small> recovery efficiency of 76.1%, which is the best value reported so far for PFCs. Furthermore, the PFC demonstrates a peak power density and current density of 186.3 μW cm<small><sup>−2</sup></small> and 1361.6 μA cm<small><sup>−2</sup></small>, respectively. The best performance of the PFC is achieved due to the ultrafast electron transfer on the biocathode and the efficient carrier separation of the photoanode. The collaborative dynamics between the photoanode and biocathode lower the CO<small><sub>2</sub></small> reduction potential, enhancing the reaction kinetics of CO<small><sub>2</sub></small> reduction to formate.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 44","pages":" 30371-30379"},"PeriodicalIF":9.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05290k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic fuel cells (PFCs) can harness energy from organic waste for electricity generation. However, incorporating CO2 reduction into PFCs to achieve carbon neutrality remains a significant challenge due to substantial thermodynamic and kinetic barriers. Herein, a PFC is constructed using a formate dehydrogenase (FDH)-based biocathode and S-scheme heterojunction TiO2/CdS engineered photoanode. The resulting PFC integrates photoanodic pollutant degradation with bio-cathodic CO2 reduction to achieve a formate production rate of 7.13 μmol h−1 with high selectivity and CO2 recovery efficiency of 76.1%, which is the best value reported so far for PFCs. Furthermore, the PFC demonstrates a peak power density and current density of 186.3 μW cm−2 and 1361.6 μA cm−2, respectively. The best performance of the PFC is achieved due to the ultrafast electron transfer on the biocathode and the efficient carrier separation of the photoanode. The collaborative dynamics between the photoanode and biocathode lower the CO2 reduction potential, enhancing the reaction kinetics of CO2 reduction to formate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化光阳极和生物阴极之间的电子传递动力学,提高光催化燃料电池的碳中性污染物去除率
光催化燃料电池(PFC)可利用有机废物的能量发电。然而,由于存在大量热力学和动力学障碍,将二氧化碳还原纳入 PFC 以实现碳中和仍是一项重大挑战。本文利用基于甲酸脱氢酶(FDH)的生物阴极和 S 型异质结 TiO2/CdS 工程光阳极构建了一种 PFC。所得到的 PFC 集光阳极污染物降解和生物阴极二氧化碳还原于一体,实现了 7.13 mol-h-1 的甲酸生产率和高选择性,二氧化碳回收效率达到 76.1%,这是已报道的 PFC 中的最佳值。此外,PFC 的峰值功率和电流密度分别为 186.3 W cm-2 和 1361.6 A cm-2。PFC 的最佳性能得益于生物阴极上的超快电子传递和光阳极的高效载流子分离。光阳极和生物阴极之间的协同动力学降低了二氧化碳的还原电位,增强了二氧化碳还原成甲酸盐的反应动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
A highly active NiCe(Fe)OxHy electrocatalyst for the oxygen evolution reaction with ultralow Fe leaching Suppressing the dissolution of organic components to construct a low-solubility SEI in sodium-ion batteries: the critical role of electrolyte additive TMSPi A hydrogel-based passive cooling Janus material with both high solar reflectance and remarkable self-cleaning capability Correction: Functional off-astoichiometry in Cu(In,Ga)Se2. Part I: topotactic continuum of ordered defect compounds Tris-amido Naphthoquinone: Toward High Capacity and Stability Organic Cathode for Aqueous Zinc Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1