{"title":"The interactions of deformation twins, zirconium hydrides, and microcracks","authors":"Saiedeh Marashi, Hamidreza Abdolvand","doi":"10.1016/j.ijplas.2024.104149","DOIUrl":null,"url":null,"abstract":"<div><div>One of the main degradation mechanisms of the zirconium alloys used in nuclear reactors is hydrogen embrittlement and the formation of zirconium hydrides. This study focuses on understanding the interactions among deformation twins, hydrides, and the microcracks that form within hydrides. For this purpose, in-situ scanning electron microscopy and interrupted ex-situ tensile experiments were conducted on hydrided zirconium specimens with favorable initial textures for the formation of extension twins. Electron backscatter diffraction (EBSD) was used to measure the orientations of the grains located in the specimens’ gauges and map them into a crystal plasticity finite element model to study hydrides and twins interactions. High spatial resolution EBSD and high-resolution imaging were used to follow the formation of microcracks, and twins live. Although the specimens were deformed to a moderate level of applied strain (∼7 %), it was observed that two types of twins nucleate, <span><math><mrow><mo>{</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>2</mn><mo>}</mo></mrow></math></span> and <span><math><mrow><mo>{</mo><mn>11</mn><mover><mrow><mn>2</mn></mrow><mo>‾</mo></mover><mn>1</mn><mo>}</mo></mrow></math></span>. While the former nucleates either before or after the nucleation of microcracks within hydrides, the latter nucleates after the formation of microcracks and grows with them. It is shown that the formation of twins may contribute to crack nucleation, yet the shear energy density on a given slip system within hydrides is the main driving force for crack nucleation. Regardless of hydride interactions with twins, a significant slip activity is recorded within hydrides prior to cracking.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"183 ","pages":"Article 104149"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002766","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main degradation mechanisms of the zirconium alloys used in nuclear reactors is hydrogen embrittlement and the formation of zirconium hydrides. This study focuses on understanding the interactions among deformation twins, hydrides, and the microcracks that form within hydrides. For this purpose, in-situ scanning electron microscopy and interrupted ex-situ tensile experiments were conducted on hydrided zirconium specimens with favorable initial textures for the formation of extension twins. Electron backscatter diffraction (EBSD) was used to measure the orientations of the grains located in the specimens’ gauges and map them into a crystal plasticity finite element model to study hydrides and twins interactions. High spatial resolution EBSD and high-resolution imaging were used to follow the formation of microcracks, and twins live. Although the specimens were deformed to a moderate level of applied strain (∼7 %), it was observed that two types of twins nucleate, and . While the former nucleates either before or after the nucleation of microcracks within hydrides, the latter nucleates after the formation of microcracks and grows with them. It is shown that the formation of twins may contribute to crack nucleation, yet the shear energy density on a given slip system within hydrides is the main driving force for crack nucleation. Regardless of hydride interactions with twins, a significant slip activity is recorded within hydrides prior to cracking.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.