{"title":"Multiscale computational analysis of crack initiation at the grain boundaries in hydrogen-charged bi-crystalline alpha-iron","authors":"Yipeng Peng, Thanh Phan, Haibo Zhai, Liming Xiong, Xiang Zhang","doi":"10.1016/j.ijplas.2024.104182","DOIUrl":null,"url":null,"abstract":"This paper presents a mesoscale concurrent atomistic–continuum (CAC) simulation of crack initiation at the atomically structured grain boundaries (GBs) in bi-crystalline BCC iron (<span><math><mi is=\"true\">α</mi></math></span>-Fe) charged with hydrogen (H). By retaining the atomistic GB structure evolution together with the long-range dislocation-mediated plastic flow away from the GB in one model at a fraction of the cost of full molecular dynamics (MD), CAC enables us to probe the interplay between the atomic-level H diffusion, the nanoscale GB cavitation, crack initiation, growth, as well as the dislocation activities far away from the GB. Our several main findings are: (i) a tensile strain normal to the GB plane largely promotes the H diffusion towards the GB. (ii) the plasticity-induced clustering of H atoms (PICH) is identified as an intermediate process in between the H-enhanced localized plasticity (HELP) and H-enhanced de-cohesion (HEDE). (iii) PICH significantly amplifies the local stress concentration at the GB and decreases its cohesive strengths, and (iv) the GBs with different atomic structures fail differently. In detail, the H-charged <span><math><mrow is=\"true\"><mi is=\"true\">Σ</mi><mn is=\"true\">3</mn></mrow></math></span> GB fails through micro-twinning assisted void nucleation and coalescence, while the H-charged <span><math><mrow is=\"true\"><mi is=\"true\">Σ</mi><mn is=\"true\">9</mn></mrow></math></span> GB fails through crack initiation and growth accompanied by dislocation emission. Compared with nanoscale molecular dynamics (MD) simulations, the mesoscale CAC models get one step closer to the experimentally measurable length scales and thus predict reasonably lower GB cohesive strengths. This research addresses one key aspect of how H impacts the GB cohesive strengths in <span><math><mi is=\"true\">α</mi></math></span>-Fe. It offers insights into the multiscale processes of hydrogen embrittlement (HE). Our findings highlight the importance of using concurrent multiscale models, such as a combination of CAC, crystal plasticity finite element (CPFE), and cohesive zone finite element method (CZFEM), to understand HE. This will, in turn, support the development of new strategies for mitigating HE in a variety of engineering infrastructures.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"7 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104182","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a mesoscale concurrent atomistic–continuum (CAC) simulation of crack initiation at the atomically structured grain boundaries (GBs) in bi-crystalline BCC iron (-Fe) charged with hydrogen (H). By retaining the atomistic GB structure evolution together with the long-range dislocation-mediated plastic flow away from the GB in one model at a fraction of the cost of full molecular dynamics (MD), CAC enables us to probe the interplay between the atomic-level H diffusion, the nanoscale GB cavitation, crack initiation, growth, as well as the dislocation activities far away from the GB. Our several main findings are: (i) a tensile strain normal to the GB plane largely promotes the H diffusion towards the GB. (ii) the plasticity-induced clustering of H atoms (PICH) is identified as an intermediate process in between the H-enhanced localized plasticity (HELP) and H-enhanced de-cohesion (HEDE). (iii) PICH significantly amplifies the local stress concentration at the GB and decreases its cohesive strengths, and (iv) the GBs with different atomic structures fail differently. In detail, the H-charged GB fails through micro-twinning assisted void nucleation and coalescence, while the H-charged GB fails through crack initiation and growth accompanied by dislocation emission. Compared with nanoscale molecular dynamics (MD) simulations, the mesoscale CAC models get one step closer to the experimentally measurable length scales and thus predict reasonably lower GB cohesive strengths. This research addresses one key aspect of how H impacts the GB cohesive strengths in -Fe. It offers insights into the multiscale processes of hydrogen embrittlement (HE). Our findings highlight the importance of using concurrent multiscale models, such as a combination of CAC, crystal plasticity finite element (CPFE), and cohesive zone finite element method (CZFEM), to understand HE. This will, in turn, support the development of new strategies for mitigating HE in a variety of engineering infrastructures.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.