Filippo Buttignol, Jörg W. A. Fischer, Adam H. Clark, Martin Elsener, Alberto Garbujo, Pierdomenico Biasi, Izabela Czekaj, Maarten Nachtegaal, Gunnar Jeschke, Oliver Kröcher, Davide Ferri
{"title":"Iron-catalysed cooperative redox mechanism for the simultaneous conversion of nitrous oxide and nitric oxide","authors":"Filippo Buttignol, Jörg W. A. Fischer, Adam H. Clark, Martin Elsener, Alberto Garbujo, Pierdomenico Biasi, Izabela Czekaj, Maarten Nachtegaal, Gunnar Jeschke, Oliver Kröcher, Davide Ferri","doi":"10.1038/s41929-024-01231-3","DOIUrl":null,"url":null,"abstract":"<p>Iron-exchanged zeolites are often deployed industrially to remediate nitric oxide (NO) and nitrous oxide (N<sub>2</sub>O) emissions. The nature of the active site and the reaction mechanism involved in the simultaneous removal of NO and N<sub>2</sub>O remain largely unknown, primarily because of the heterogeneity of Fe species. Here we combined catalytic experiments with transient operando X-ray absorption spectroscopy, electron paramagnetic resonance and diffuse reflectance infrared Fourier transform spectroscopy to disentangle the nature of Fe species and elementary reaction steps. We identified spectroscopically the square-planar Fe<sup>2+</sup> sites in the β-cationic position responsible for N<sub>2</sub>O activation and the related redox cycle. These sites communicate with tetrahedrally coordinated Fe<sup>2+</sup> sites in the adjacent γ-cationic position, accounting for adsorption and redox-mediated oxidation of NO. The availability of NH<sub>3</sub> adsorbed on neighbouring Brønsted acid sites regulates the overall reaction rate of this dual-site mechanism by intercepting the NO oxidation sequence. The cooperation between these redox processes ensures enhanced conversion of both NO and N<sub>2</sub>O.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"2 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01231-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Iron-exchanged zeolites are often deployed industrially to remediate nitric oxide (NO) and nitrous oxide (N2O) emissions. The nature of the active site and the reaction mechanism involved in the simultaneous removal of NO and N2O remain largely unknown, primarily because of the heterogeneity of Fe species. Here we combined catalytic experiments with transient operando X-ray absorption spectroscopy, electron paramagnetic resonance and diffuse reflectance infrared Fourier transform spectroscopy to disentangle the nature of Fe species and elementary reaction steps. We identified spectroscopically the square-planar Fe2+ sites in the β-cationic position responsible for N2O activation and the related redox cycle. These sites communicate with tetrahedrally coordinated Fe2+ sites in the adjacent γ-cationic position, accounting for adsorption and redox-mediated oxidation of NO. The availability of NH3 adsorbed on neighbouring Brønsted acid sites regulates the overall reaction rate of this dual-site mechanism by intercepting the NO oxidation sequence. The cooperation between these redox processes ensures enhanced conversion of both NO and N2O.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.