Iron-catalysed cooperative redox mechanism for the simultaneous conversion of nitrous oxide and nitric oxide

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2024-10-10 DOI:10.1038/s41929-024-01231-3
Filippo Buttignol, Jörg W. A. Fischer, Adam H. Clark, Martin Elsener, Alberto Garbujo, Pierdomenico Biasi, Izabela Czekaj, Maarten Nachtegaal, Gunnar Jeschke, Oliver Kröcher, Davide Ferri
{"title":"Iron-catalysed cooperative redox mechanism for the simultaneous conversion of nitrous oxide and nitric oxide","authors":"Filippo Buttignol, Jörg W. A. Fischer, Adam H. Clark, Martin Elsener, Alberto Garbujo, Pierdomenico Biasi, Izabela Czekaj, Maarten Nachtegaal, Gunnar Jeschke, Oliver Kröcher, Davide Ferri","doi":"10.1038/s41929-024-01231-3","DOIUrl":null,"url":null,"abstract":"<p>Iron-exchanged zeolites are often deployed industrially to remediate nitric oxide (NO) and nitrous oxide (N<sub>2</sub>O) emissions. The nature of the active site and the reaction mechanism involved in the simultaneous removal of NO and N<sub>2</sub>O remain largely unknown, primarily because of the heterogeneity of Fe species. Here we combined catalytic experiments with transient operando X-ray absorption spectroscopy, electron paramagnetic resonance and diffuse reflectance infrared Fourier transform spectroscopy to disentangle the nature of Fe species and elementary reaction steps. We identified spectroscopically the square-planar Fe<sup>2+</sup> sites in the β-cationic position responsible for N<sub>2</sub>O activation and the related redox cycle. These sites communicate with tetrahedrally coordinated Fe<sup>2+</sup> sites in the adjacent γ-cationic position, accounting for adsorption and redox-mediated oxidation of NO. The availability of NH<sub>3</sub> adsorbed on neighbouring Brønsted acid sites regulates the overall reaction rate of this dual-site mechanism by intercepting the NO oxidation sequence. The cooperation between these redox processes ensures enhanced conversion of both NO and N<sub>2</sub>O.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"2 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01231-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-exchanged zeolites are often deployed industrially to remediate nitric oxide (NO) and nitrous oxide (N2O) emissions. The nature of the active site and the reaction mechanism involved in the simultaneous removal of NO and N2O remain largely unknown, primarily because of the heterogeneity of Fe species. Here we combined catalytic experiments with transient operando X-ray absorption spectroscopy, electron paramagnetic resonance and diffuse reflectance infrared Fourier transform spectroscopy to disentangle the nature of Fe species and elementary reaction steps. We identified spectroscopically the square-planar Fe2+ sites in the β-cationic position responsible for N2O activation and the related redox cycle. These sites communicate with tetrahedrally coordinated Fe2+ sites in the adjacent γ-cationic position, accounting for adsorption and redox-mediated oxidation of NO. The availability of NH3 adsorbed on neighbouring Brønsted acid sites regulates the overall reaction rate of this dual-site mechanism by intercepting the NO oxidation sequence. The cooperation between these redox processes ensures enhanced conversion of both NO and N2O.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁催化的同时转化一氧化二氮和一氧化氮的合作氧化还原机制
工业上经常使用铁交换沸石来清除一氧化氮(NO)和一氧化二氮(N2O)的排放。同时去除 NO 和 N2O 所涉及的活性位点性质和反应机理在很大程度上仍不为人所知,这主要是因为铁的种类具有异质性。在此,我们将催化实验与瞬态操作 X 射线吸收光谱、电子顺磁共振和漫反射红外傅立叶变换光谱相结合,以厘清铁物种的性质和基本反应步骤。我们从光谱学角度确定了位于 β 阳离子位置的方形平面 Fe2+ 位点,这些位点负责 N2O 活化和相关的氧化还原循环。这些位点与相邻 γ 阳离子位点上的四面体配位 Fe2+ 位点相通,从而实现了 NO 的吸附和氧化还原。相邻布氏酸位点上吸附的 NH3 可通过截断 NO 氧化顺序来调节这种双位点机制的总体反应速率。这些氧化还原过程之间的合作确保了 NO 和 N2O 转化率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Face to phase Surface (dis)order sleuthing Coacervation-enhanced peptide catalysis An enantioselective HAT for diols Effective anions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1